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A new Majorana platform in an Fe-As bilayer
superconductor
Wenyao Liu1,2,9, Lu Cao 1,2,9, Shiyu Zhu 1,2,9, Lingyuan Kong 1,2,9, Guangwei Wang3, Michał Papaj4,
Peng Zhang 5, Ya-Bin Liu6, Hui Chen 1,2, Geng Li 1,2, Fazhi Yang1,2, Takeshi Kondo5, Shixuan Du1,7,

Guang-Han Cao 6, Shik Shin 5, Liang Fu4, Zhiping Yin 3, Hong-Jun Gao 1,2,7✉ & Hong Ding 1,2,7,8✉

Iron-chalcogenide superconductors have emerged as a promising Majorana platform for

topological quantum computation. By combining topological band and superconductivity in a

single material, they provide significant advantage to realize isolated Majorana zero modes.

However, iron-chalcogenide superconductors, especially Fe(Te,Se), suffer from strong

inhomogeneity which may hamper their practical application. In addition, some iron-pnictide

superconductors have been demonstrated to have topological surface states, yet no

Majorana zero mode has been observed inside their vortices, raising a question of uni-

versality about this new Majorana platform. In this work, through angle-resolved photo-

emission spectroscopy and scanning tunneling microscopy/spectroscopy measurement, we

identify Dirac surface states and Majorana zero modes, respectively, for the first time in an

iron-pnictide superconductor, CaKFe4As4. More strikingly, the multiple vortex bound states

with integer-quantization sequences can be accurately reproduced by our model calculation,

firmly establishing Majorana nature of the zero mode.
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The iron-chalcogenide superconductor Fe(Te,Se) and its
analogous compounds have been found to be able to host
isolated Majorana zero modes (MZMs), due to the unique

combination of the large superconducting (SC) gap, small Fermi
energy, and nontrivial band topology in a single material1–8.
However, the intrinsic inhomogeneity in Fe(Te,Se) complicates
the occurrence of MZMs, causing the topological trivial region in
the material9–11, which brings obstacles for further studies of
MZMs and explorations of topological quantum computing. In
addition, another family of iron-based superconductors (FeSCs),
iron pnictides (Fe-As), which usually have higher values of SC
transition temperature (Tc) and more abundant crystal structure
forms, has long been omitted from the studies of MZMs. While
several Fe-As superconductors are predicted to have topological
nontrivial Dirac surface states in the previous work, no experi-
mental evidence of MZMs has yet been found12. It inspires us to
explore a new Majorana-hosting material in the iron pnictide
family, which might reveal new physical phenomena and also
improve the potential utilization of MZMs.

In this work, we perform a comprehensive theoretical and
experimental research on a new type Fe-As superconductor
CaKFe4As4 that has a topological band inversion caused by the
bilayer band folding. The crystal structure of CaKFe4As4 can be
viewed as two different 122-type Fe-As superconductors CaFe2As2
and KFe2As2 inserted into one another (Fig. 1a)13, where this-
special structure not only induces high-Tc superconductivity

(Tc= 35 K) by self-doping effect14 but also breaks the glide-mirror
symmetry along the c-axis (Fig. 1a inset). Applying angle-resolved
photoemission spectroscopy (ARPES) and the density functional
theory (DFT) plus dynamical mean field theory (DMFT) calcu-
lation, our investigation indicates that the glide-mirror symmetry
breaking together with electron correlations create a topological
band inversion in CaKFe4As4. Further measurements confirm the
existence of topological Dirac band and its SC state. In addition,
by using scanning tunneling microscopy/spectroscopy (STM/S),
we observe MZMs within integer-quantization sequence of
Caroli–de Gennes–Matricon bound states (CBSs) inside a SC
vortex core, which is identified as a topological hallmark of MZMs
in the previous studies on Fe(Te,Se)2,9. More remarkably, the
energy positions and spatial line profiles of multiple bound states
can be accurately reproduced by our simple theoretical simulation
with all experimental parameters. Our findings demonstrate that
CaKFe4As4, with the homogeneous bulk and higher Tc, is a new
material platform to host and manipulate MZMs.

Result
Topological band inversion in the bulk. The DFT plus DMFT
calculations (Figs. 1b–d and 2a) confirm that a topological band
inversion can be induced by the glide-mirror symmetry breaking.
The glide-mirror symmetry, as seen in CaFe2As2, is broken due to
the difference between Ca and K atoms on the opposite sides of
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Fig. 1 Topological band inversion induced by bilayer structure in CaKFe4As4. a The crystal structure of CaKFe4As4 with the inset of the As-Fe-As
tetrahedron. The bond lengths (d1, d2) and angles are different between Fe-As1 and Fe-As215. b–d DFT+DMFT calculation results for the band structures of
b CaFe2As2, c CaKFe4As4, and d CaKFe4As4 with SOC, respectively. In the b, c, the red symbols of “+” and “−” represent the band parity, and the red
(black) dashed line box marks the position of the topological nontrivial (trivial) band inversion. The glide-mirror symmetry breaking effect in 1144 system is
visible by comparing the band structures of CaFe2As2 with CaKFe4As4. In CaKFe4As4, a large hybridization gap (~0.5 eV) is formed between the folded pz
bands, and a band inversion with a SOC gap of 20 to 30meV is found near EF at d. e Fermi surfaces measured by ARPES at a photon energy of 35 eV, which
is around the middle point of Γ–Z, note that the ‘a’ in scale is 2.73 Å referring to the Fe–Fe distance of CaKFe4As4 in the real space; the red contours on the
right are extracted from DFT+DMFT calculation at Z and A, which shows good consistence with experimental Fermi surface. f–h ARPES spectral intensity
plots along the blue dashed line in e with p-polarized photons at energies of 42 eV (Γ) and 27 eV (Z and A). i ARPES spectral intensity plot along the Γ–Z
direction measured under photon energies from 21 to 45 eV. j The momentum distribution curve (MDC) second derivative of the ARPES intensity plot
along the A–Z direction obtained from g, h, which enhances the vertical part of the band but suppresses the horizontal part of the band32, with comparison
to the calculated results from d (plotted as colored lines).
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Fe-As layer in CaKFe4As4 (Fig. 1a). Consequently, the Brillouin
zone folds along Γ–Z, opening a large hybridization gap (~0.5 eV) at
the crossing points of the folded 3dz2/4pz band, and pushes its lower
branch below the dxz/yz band at Γ, causing a topological band
inversion (Supplementary Fig. 1d–f). Finally, the spin–orbital cou-
pling (SOC) opens a topological gap at the band crossing point
between 3dz2/4pz and 3dxz/yz bands. We note that our DMFT cal-
culation (Fig. 1b–d) incorporates a mass renormalization of ~5
compared to the simple DFT calculation15, indicating relatively
strong correlations, which can reduce the Fermi energy and the
coherence length (ξ0) in this material (details of our calculations are
described in Supplementary Materials).

Experimentally, we first performed synchrotron-based ARPES
measurements (hʋ= 21–45 eV, Texp= 18 K). Figure 1e shows the
comparison between the measured Fermi surfaces (FSs) at photon
energy of 35 eV (left) and the extracted FSs from DFT+DMFT
calculation at the Z/A point (right). Self-hole-doping effect is
reflected by the large areas of hole-like FSs16. Band dispersions
near high-symmetry points were also measured (Fig. 1f–h), with a
comparison to the DFT+DMFT results (Fig. 1j), showing a fairly
good agreement between the two results. Importantly, the
innermost hole-like band around Γ has a strong kz dispersion
(Fig. 1f, g), so that the hole-like FS pocket around Z sinks well
below the Fermi level (EF) at Γ, which is the consequence of the
band inversion between 3dz2/4pz and 3dxz bands. In fact, a clear

band dispersion along Γ–Z was observed by our ARPES (Fig. 1i),
fully consistent with our band calculations (Fig. 1d).

Evidence of SC Dirac surface states. We next demonstrate
the direct observation of the Dirac surface band around Γ (kx=
ky= 0). The calculation of the surface state in CaKFe4As4
(Fig. 2a) shows that the Dirac-cone-type band structure exists
inside the SOC gap with its Dirac point above EF, which may
obstruct the ARPES technique in observing the Dirac-cone-like
feature of the surface state. In order to identify the possible
surface states, we implemented the synchrotron-based ARPES
measurement on the samples with the in situ potassium (K)
surface adsorption that has been proven to induce the effective
electron-doping effect on the 122-type FeSC17. The experimental
photon energy was set to 76 eV, which should be beneficial to
detect the electron states of the sample surface when the mean
free path of photon-emitted electrons should be small18,19. In
addition, the band structure (Fig. 2b) in undoped CaKFe4As4
indicates that the selected kz is around the Γ point, while the 3dz2/
4pz (tracked by the blue line) is far below EF. Since there should
be a large energy separation between the bulk bands and the
surface state near the Γ point from the DFT+DMFT calculation,
it creates the condition to clearly measure the surface state.
Inspiringly, we observed an extra band distinguished from the
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3dz2/4pz band, both in the ARPES data (Fig. 2b) and the corre-
sponding second-derivative plot (Fig. 2d), which displays the
linear-like dispersion around EF and cannot be assigned to any
bulk band as predicted by our calculation (Fig. 1c, d), suggesting
that the newly observed band is the surface state.

To verify the existence of topological surface state, we utilized
the potassium (K)-surface adsorption on the sample for 40 s. Note
that the surface band dispersion is clearer in the K-surface dosing
sample (Fig. 2c) than the undoped sample and displays a good
linearity near EF. Moreover, an apparent Dirac-cone-like band
can be clearly identified by the second-derivative data (Fig. 2e)
and the MDC plot (Fig. 2f) of K-doped CaKFe4As4. We extracted
the surface band dispersion under each doping level by a simple
Lorentzian fit20 (the colored dashed lines in Fig. 2d, e). The
parameters of the Dirac-cone-like bands are estimated by linearly
matching on the tracked dispersions mentioned above (the solid
lines in Fig. 2d, e), which suggests the energy of the Dirac point
(ED) is ~20 meV and the Fermi momentum (kF) is ~0.025 π/a in
undoped CaKFe4As4 (red solid line in Fig. 2d). Figure 2g displays
the changing of ED with the K-surface dosing. The systematic
shifting of ED implies the effective doping effect by the in situ K-
surface adsorption. The result of the K-doped CaKFe4As4
indicates that the newly observed band in the undoped one
(Fig. 2b) is the Dirac surface state, which may induce the
topological vortex with MZM.

Then we used the high-resolution laser ARPES (hʋ ~ 7 eV) to
measure the surface band in the SC state. There is a striking
contrast between the sharp spectra in the SC state (Fig. 2h, i) and
the broad spectra in the normal state (Supplementary Fig. 7a, b),
which is similar to the case in Fe(Te,Se)21. From the two Fermi
crossings (Figs. 2j, k, k1, k2 in Fig. 2h) near Γ, we can extract
the values of two SC gap (5.9 meV for k1 and 7.5 meV for k2).

Since the gap values in most FeSCs, including this material,
roughly follow the Δ0cos(kx)cos(ky) formula20, when measured by
ARPES, the SC gap at k1 (closer to Γ) is expected to be larger than
the one at k2 if both gaps come from the bulk bands. However,
our observation shows that the SC gap in the vicinity of Γ has a
smaller size (5.9 < 7.5 meV), which also supports that this SC gap
come from the surface band since the smaller SC gap on the
topological surface state is likely a proximity SC gap induced by
the bulk superconductivity, just as the case in Fe(Te,Se)1,2.
Combining the band calculation, the band structure data of K-
surface dosing and the SC gap measurements, our results strongly
support that CaKFe4As4 hosts a topological surface state with its
Dirac point just slightly above EF.

Characterization of sample surface by STM/S. Encouraged by
the promising results from our ARPES measurements and band
calculations, we conducted high-resolution (~0.3 meV) STM/S
experiments at low temperature (Texp= 0.45 K) to directly search
for the signal of MZM inside a vortex core of this superconductor.
A typical cleaved surface shows a good atom-resolved topography
revealing that the surface is formed by the As lattice22, with either
Ca or K atoms or clusters scattered on top of it (Fig. 3a, b). We
chose a flat region with few clusters of Ca or K on which the dI/
dV spectra are homogenous (Fig. 3c) across a spatial line marked
in Fig. 3a. The SC spectra have a main SC gap (Δ) of 5.8 meV,
which is likely from the topological surface state with a gap value
of 5.9 meV obtained by ARPES, since STM/S is mostly sensitive
to the surface. The small bumps at ±3.4 meV are likely coming
from the SC gap on the largest hole-like FS since a similar gap
value was also observed by ARPES on that FS. The features of SC
spectra are similar to the previous results23,24.
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MZM within integer-quantized vortex-bound states. By
applying a 2-T magnetic field along the c-axis, we clearly observed
SC vortices on the surface (Fig. 3d). We focused on one vortex
within a 20 × 20 nm2 area and measured dI/dV spectra along the
white arrow across the vortex core (Fig. 3e). A robust zero-bias
conductance peak (ZBCP) that does not split or shift as it crosses
the vortex can be clearly seen in a line-cut intensity plot (Fig. 3f),
and a waterfall-like dI/dV spectra plot (Fig. 3g). By utilizing an
analytical Majorana wave function derived from Fu–Kane
model2,7, the spatial line profile of the ZBCP is well fitted with the
parameters of the Dirac surface state as shown in Fig. 3i (Δ= 5.8
meV, EF= 20.9 meV, ξ0= 6.4 nm), which are highly consistent
with our ARPES and STM data.

Besides the zero mode, there are multiple discrete peaks at
finite energies inside the vortex core (Fig. 3h). It is natural to
recognize these modes as the quantized CBSs when the electronic
temperature (Teff ~ 0.69 K) is much smaller than the quantum
limit temperature (TQL ~ TcΔ/EF ~ 10 K)25,26. We note that the
intensity of CBSs is stronger at the negative energy side,
consistent with the scenario that the Dirac point is above EF13.
As demonstrated recently9, the CBSs with integer-quantized
energy levels, coexisting with a robust MZM, are a hallmark of a
Dirac-state-induced vortex-bound states, since the intrinsic π
phase carried by the spin of surface Dirac fermions lead to an
additional half-integer level shift7,27–30. To check this behavior,

we used a multi-Gaussian fit to extract the accurate energy
positions of discrete bound states inside the vortex (see
Supplementary Fig. 2). We resolved seven discrete levels marked
by L0, L±1, L±2, L±3 at the energies of 0, ±1.2, ±2.5, and ±3.6 meV,
respectively, as shown in Fig. 4a. We displayed the extracted
energies of the vortex-bound states at each spatial position
onto the line-cut intensity plot (Fig. 4b) and also did a
statistics analysis in a histogram plot (Fig. 4c), showing that the
discrete vortex-bound states obey an integer quantization with
the approximate form of 0: 1: 2: 3, which are derived from the
integer angular momenta of vortex-bound states induced by the
intrinsic π phase of Dirac surface states. Remarkably, we used a
model calculation with the same parameter set (Δ= 5.8 meV,
EF= 20.9 meV, ξ0= 6.4 nm) to reproduce the level energies very
well (Fig. 4d).

Characteristic spatial pattern and model calculation. Due to the
high quality of dI/dV data measured in a vortex core, we are able
to obtain clear observation of spatial patterns for the first four
vortex-bound states, i.e., L0, L−1, L−2, and L−3 (Fig. 4e). We
observed that both the MZM (L0) and the first-level CBS (L−1)
have a solid-circle pattern with the maximum of intensity at the
vortex center, while the other higher energy CBSs (L−2 and L−3)
show hollow-ring patterns around the vortex center (more results
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including CBSs at the positive energy side are displayed in Sup-
plementary Fig. 4). Note that, in an ordinary vortex, only one
solid-circle pattern exists, as shown by the theoretical simulation
in Supplementary Fig. 4. This phenomenon that both the MZM
(L0) and the first-level CBS (L−1) possess the maximum-intensity-
at-center spatial pattern simultaneously was demonstrated as a
fingerprint of surface Dirac fermion-induced vortex-bound states
in a topological vortex9. In order to simulate the spatial patterns
in CaKFe4As4, we employed a general and direct numerical cal-
culation7 based on the same set of parameters of the Dirac surface
state (Δ= 5.8 meV, EF= 20.9 meV, ξ0= 6.4 nm) used above.
Unlike the simulation in the Fe(Te,Se) case, we reproduced the
experimental results with excellent agreement (Fig. 4f, g) without
any fine tuning of the gap profile around the vortex, which bodes
well with the stoichiometric properties of the CaKFe4As4 bulk
component.

We further note that, while MZM always retains a solid-circle
pattern, the same kind of pattern for the first-level CBSs can be
only retained on one side, with the other side having a hollow-
ring pattern31. A positive (negative) Dirac point causes the
solid-circle pattern on the negative (positive) side of first-level
CBS. Indeed, we observed that the solid-circle pattern appears
on the negative (L−1) side in CaKFe4As4, fully consistent with
the theoretical simulation based on a Dirac point above EF
(Supplementary Fig. 4). Therefore, all the main features of a
topological vortex core, including the spatial line profile of
MZM, level energies, and spatial patterns of discrete CBSs,
can be fully reproduced by simple model calculations based on
a same SC Dirac surface state. This establishes in a convincing
manner that this high-Tc Fe-As bilayer superconductor, with
glide-mirror symmetry breaking15, can host isolated MZMs on
its surface, offering a new and more practical platform for
exploring the properties of MZMs and manipulating them.

Methods
Materials and measurement. Single crystals of CaKFe4As4 were grown using the
self-flux method, and the value of Tc was determined to be 35 K from magneti-
zation and resistivity measurements. Clean surfaces for ARPES measurements were
obtained by cleaving samples in situ in an ultrahigh vacuum better than
5 × 10−11 Torr. Synchrotron-based ARPES measurements were performed at the
“Dreamline” beamline and BL03U of the Shanghai Synchrotron Radiation Facility
with Scienta Omicron DA30L analyzers. The energy resolution of “Dreamline”
beamline is ~10–15 meV and that of BL03U is ~30 meV. High-resolution laser
ARPES measurements were performed at the Institute for Solid State Physics at the
University of Tokyo on an ARPES system with a VG-Scienta HR8000 electron
analyzer and a vacuum ultraviolet laser of 6.994 eV, with the energy resolution of
~3 meV. The samples used in STM experiments were cleaved in situ (Tcleave= 77
K) and immediately transferred to an STM head. Experiments were performed in
an ultrahigh-vacuum (1 × 10−11 mbar) low-temperature (T ~ 0.45 K) STM system
of USM-1300-3He with a vector (9z− 2x− 2y Tesla) magnet. Chemically etched
tungsten tips were calibrated on Au (111) surface before measurement. Differential
conductance (dI/dV) spectra were acquired by a standard lock-in amplifier at a
frequency of 973.0 Hz under the zero-to-peak modulation voltage Vmod= 0.1 mV.
The calibration and configurations of the STM system are shown in Supplementary
Note 6. The setpoint of equipment of Figs. 3 and 4 is Vs=−5 mV, It= 200 pA,
except Fig. 3a where Vs=−25 mV, It= 20 pA.

Data availability
The datasets that support the findings of this study are available from the corresponding
author upon reasonable request.
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