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Majorana zero modes (MZMs) are proposed as the building 
blocks of fault-tolerant topological quantum computa-
tion1 due to their non-Abelian statistics. Several systems 

are predicted to host MZMs, such as intrinsic p-wave superconduc-
tors2,3 and multiple heterostructures combining strong spin–orbital 
coupling (SOC) and superconductivity4–12. Recently, a new single-
material platform composed of iron-based superconductors (FeSCs) 
has been discovered13–15 in which topological non-trivial bands and 
high-temperature (high-Tc) superconductivity coexist naturally16 
without the need for the proximity effect common to other arrange-
ments. This has led to the observation of a pronounced zero-bias 
conductance peak (ZBCP) in vortices of FeTe0.55Se0.45 (ref. 17) and a 
related compound18.

Although a ZBCP that does not split across the vortex core is 
regarded as a strong indication of MZMs and the topological nature 
of the superconducting vortex4,17–19, the observation of ZBCPs alone 
is not enough to prove it. Although several pieces of evidence, 
including spatial profile, tunnelling barrier dependence, magnetic 
field dependence and temperature evolution, are fully consistent 
with a MZM in FeTe0.55Se0.45 (ref. 17), a more convincing verification 
is required in the form of a demonstration of the non-trivial topol-
ogy of the superconducting vortex and underlying band structure. 
Single-crystal FeTe0.55Se0.45 is a unique platform for demonstrating 
the fundamental distinction between trivial and topological vortices. 
Its large ratio17,20 Δ/EF (Δ being the superconducting gap, EF being 
the Fermi energy) enables realization of the quantum limit21, where 
the low-lying quasiparticle bound states, the so-called Caroli–de  
Gennes–Matricon bound states (CBSs)22, become discrete levels  
observable separately within the hard superconducting gap.  

These bound states are the eigenstates of the vortex planar angu-
lar momentum21–23, with eigenvalues determined by the topologi-
cal phase of the vortex line4,24. Even though topology dictates the 
existence of two types of discrete bound state spectrum, in ordinary 
circumstances a given material belongs to just one of the classes. 
This restricts a single sample to one type of spectrum and thus for-
bids a direct comparison. However, the intrinsic inhomogeneity of 
FeTe0.55Se0.45 (refs. 25–28), while reducing the number of vortices that 
host MZMs17, provides a rare opportunity to observe topological 
and ordinary vortices simultaneously in the same material or even 
the same region, thus making such a comparison feasible.

Here, we report a systematic scanning tunnelling microscopy/
spectroscopy (STM/S) study of vortices in FeTe0.55Se0.45. We observe 
two topologically distinct classes of vortex, which differ not only 
in the presence or absence of ZBCPs, but also in the quantization 
sequence of the remaining higher-energy subgap states. Our analy-
sis compares and contrasts multiple vortices that belong to these 
two classes and reveals that the ratios of bound state energy follow 
either integer or half-odd-integer numbers, provided that the chem-
ical potential is not too small compared to the superconducting gap. 
This fundamental difference, arising due to an additional angular 
momentum contribution, is accounted for by our model calcula-
tion, which reproduces the discrete bound state spectra and allows 
us to identify the integer-spaced levels as emerging from topological 
surface states. In contrast, in an ordinary vortex without MZM, the 
discrete CBS energies have half-odd-integer spacing, reflecting the 
trivial topology of the underlying band structure. This half-integer 
level shift of the vortex bound states between two distinct classes of 
vortex provides strong evidence for the existence of a pure Majorana 
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zero mode in the FeSC material. Our results also provide a detailed 
understanding of vortex bound states in FeTe0.55Se0.45 and in this way 
facilitate future applications of MZMs in this material platform.

Integer quantized CBSs in a topological vortex core
To investigate the vortex bound state spectra experimentally, we per-
formed low-temperature (Texp = 0.55 K), high-resolution (0.28 meV) 
STM/S measurements on as-grown superconducting FeTe0.55Se0.45 
single crystals (Tc = 14.5 K). An atomically resolved lattice structure 
is observed on the in situ cleaved surface (inset, Fig. 1a). When the 
magnetic field exceeds Hc1, superconducting vortices appear as the 
material enters the mixed state typical of the type II superconduc-
tor29. With a 6.0 T magnetic field applied perpendicular to the sam-
ple surface, we find multiple vortices in the zero-bias conductance 
map shown in Fig. 1a. In the centre of the vortex core, there are 
sharp ZBCPs with a full-width at half-maximum that is almost reso-
lution- and temperature-limited (Supplementary Fig. 1a,b). In our 
previous work17, we provided evidence that this ZBCP is a Majorana 
zero mode induced by the surface Dirac fermions observed in high-
resolution angle-resolved photoemission spectroscopy (ARPES) 
measurements16. In this study, we highlight additional high-energy 
subgap features in the spectrum that are crucial in distinguishing 
between the topological and trivial nature of superconducting vor-
tices and the underlying band structure. To obtain a better under-
standing of the origin of these subgap features, it is beneficial to 

focus on the vortices where there are several visible peaks inside the 
gap. This situation corresponds to vortices present in a region where 
Δ/EF is smaller, but not too small, to guarantee the presence of sev-
eral subgap levels with discrete spectra observable under the quan-
tum limit21. For such a vortex, the spectrum measured slightly off 
centre (blue curve, Fig. 1b) shows three high-energy bound states 
that coexist with the MZM. We find that, similar to the MZM, the 
non-zero energy bound states also do not shift when we change the 
spatial position of the STM tip (Fig. 1c). The discrete features in the 
spectrum (for which the energy does not shift along the real space 
cut) are characteristic of CBSs in the quantum limit21, as observed 
previously30. The strong electron correlation in this material31 
leads to a large Δ/EF, thus enabling our experiments well below the 
required temperature (Texp < TQL = TcΔ/EF).

We next examine the level spacing of these discrete CBSs coex-
isting with a MZM (Fig. 2). We extract the energy positions of each 
level (Fig. 2c) using a Gaussian fit (Fig. 2b). We identify six discrete 
levels marked by L0, L±1, L±2, L+3, with energy values of 0, 0.65, 1.37 
and 1.93 meV, respectively (Supplementary Fig. 1d). It is clear that 
the CBSs are almost equally spaced in energy. Using the energy of the 
first level as the energy unit, we present a histogram for each of the 
levels in Fig. 2d and show that the ratio of the energy levels (EL/ΔE)  
closely follows the form 0:1:2:3. The integer quantized CBSs can 
also be visualized in the overlap plot in Fig. 2e, which shows several 
peaks that do not shift in space and that coexist with the sharp MZM. 
We summarize the energy level ratios of seven different vortices in 
which a MZM is observed in Fig. 2f. Although the absolute level 
energies vary slightly from vortex to vortex (Supplementary Fig. 2), 
the normalized energy in units of the first energy level converges to 
a straight line of integer quantization for all of the vortices present 
in such regions. This suggests that, although the CBS energy values 
in those vortices are influenced by the local environment, the inte-
ger quantized property is robust, as long as the topological nature of 
the underlying band structure remains intact (see additional set of 
data measured under 40 mK and 2.0 T in Supplementary Fig. 9a,b).

We support this conclusion with an energy spectrum calcula-
tion using the Fu–Kane model4,17 (for details see Supplementary 
Section IV). We present a comparison of the observed peak posi-
tions and calculated energy eigenvalues of the vortex bound states 
(Supplementary Fig. 5f). The excellent agreement provides strong 
evidence for the topological nature of vortices in FeTe0.55Se0.45, dem-
onstrating that the integer quantized CBS levels are the direct con-
sequence of the topological surface states. In our previous work17, 
we focused on vortices with larger level spacing between the MZM 
and first vortex bound state at non-zero energy. Our calculation also 
reproduces its spectrum precisely when we decrease the value of the 
chemical potential (Supplementary Fig. 5e). This shows that, in the 
case of the chemical potential being very close to the Dirac points, 
a large level spacing will push the first non-zero energy bound state 
very close to the energy of the superconducting gap, and thus the 
integer quantization of CBS levels is broken down by quantum con-
finement effects32. We also note that the energy of the Dirac point 
is a ‘sweet spot’ for quantum computation. If the chemical poten-
tial is located exactly at such a point, a MZM is the only allowed 
subgap state in a topological vortex core32–34, and all the other non-
zero bound states are pushed to the superconducting gap edge 
(Supplementary Section III and Supplementary Fig. 5). The larger 
level spacing between the MZM and the first CBS in this material, 
especially when the material approaches the zero doping limit32–34 
(Supplementary Fig. 6), protects the MZM from external perturba-
tions35, which is favourable for the demonstration of non-Abelian 
statistics of MZMs in a braiding operation1,36.

Half-odd-integer quantized CBSs in an ordinary vortex core
However, in our samples there exists another class of vortices that 
do not contain MZMs. To examine their origin, we repeat the 
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Fig. 1 | CBSs in a vortex with MZM. a, A normalized zero-bias conductance 
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. Inset: STM topography of FeTe0.55Se0.45 

(scanning area of 10 × 10 nm2; sample bias Vs = −5 mV, tunnelling current 
It = 0.2 nA). b, Typical tunnelling conductance spectra measured around 
the vortex marked by the white box in a. The curves are offset for clarity. 
The red curve is measured at the vortex centre. The blue curve is measured 
slightly off centre and the black curve is measured at the vortex edge. The 
short coloured bar below each curve marks its zero conductance. c, Three-
dimensional (3D) display of the line-cut intensity plot along the white 
dashed line in a. Four subgap states are identified by arrows in different 
colours. Besides the MZM, all the CBSs almost remain at the same energy 
along the line cut through the vortex.
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analysis from the previous section for the CBSs in these ordinary 
vortices. Similar to the case of a topological vortex, CBSs in the 
ordinary vortex are discrete in energy (Fig. 3). The first CBS level 
(L+1) is located at 0.26 meV. The energies of higher levels (L+2, L+3, 
L+4, L+5) are found to be 0.83, 1.34, 1.84 and 2.34 meV, respectively. 
These CBSs show a strong particle–hole asymmetry, being strong 
in positive energy and very weak in negative energy (Fig. 3b). This 
particle–hole asymmetry is a common phenomenon for the super-
conducting vortex core of FeSC materials37,38, although the degree 
of asymmetry varies for different vortices (see Supplementary  
Fig. 4 for more examples measured at 550 mK and Supplementary 
Fig. 9c,d for an additional set of data measured under 40 mK and 
2.0 T that has more clearly visible particle–hole symmetric peaks at 
negative energies).

Although we cannot locate the L−1 level of the CBSs in Fig. 3, the 
absence of the ZBCP indicates that no bound state in the vortex has 
an angular momentum eigenvalue equal to zero. By using the first 
level spacing as a unit, we summarize the ratios (EL/ΔE) of the three 
vortices in Fig. 3d. Despite a strong variation in particle–hole asym-
metry among these vortices, the ratios converge into a straight line 
of half-odd-integer quantization with the form 0.5:1.5:2.5:3.5:4.5. 
The appearance of CBSs with energy values proportional to half-odd  

integers in a vortex without a ZBCP is consistent with the expected 
behaviour of an ordinary vortex core in which only the pairing 
in conventional bands contributes to the quasiparticle excitations 
under a magnetic field21–23,39. The angular momentum eigenvalues 
of the bound states in an ordinary vortex are half of an odd inte-
ger. Accordingly, the energies of CBSs inherit the half-odd-integer 
quantization with an equal level spacing close to the centre of the 
gap. In this case we also provide a numerical calculation of the 
energy spectrum based on solving the Bogoliubov–de Gennes equa-
tion with parabolic conventional bands that reproduces the experi-
mental energy values (for details see Supplementary Fig. 3).

Characteristic spatial pattern of the quantized CBSs
Friedel-like oscillation of the local density of states has been pre-
dicted in half-odd-integer quantized CBSs of an ordinary vortex 
core, with the spatial periodicity being approximately on the scale of 
the Fermi wavelength of order 1/kF (refs. 21,40). The typical kF of con-
ventional bands is larger than 0.1 A−1 (ref. 41), leading to the spatial 
oscillations of CBSs within 1 nm in an ordinary vortex core, which 
is difficult to observe by STM29,30,37–39 (see Supplementary Fig. 11  
for an example). However, in FeTe0.55Se0.45, a minimal value of kF 
on the order of 0.01 A−1 was observed for its Dirac surface state16. 
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Therefore, the resulting large oscillation periodicity enables easier 
observation of the spatial pattern of CBSs by STM. As a final piece 
of evidence for the topological nature of the vortices that contain 
ZBCPs, we perform a constant-bias conductance mapping of the 
three lowest levels of the integer quantized CBSs (Fig. 4). Although 
the ZBCP and the first-level CBS (L+1) display a solid circle spa-
tial pattern around the centre of the vortex core (left, Fig. 4a,b), the 
second-level CBS (L+2) shows a hollow ring pattern around the vor-
tex centre (left, Fig. 4c). This pattern is unique to Dirac fermions 
of topological surface states with spin-momentum locking, whereas 
in ordinary vortices only a single bound state has a wavefunction 
maximum at the centre of the vortex21,42 (Fig. 4d–f). The measure-
ment is also fully consistent with our numerical calculation for a 
topological vortex (middle, Fig. 4a–c) which clearly reveals the dif-
ference in the spatial pattern of the wavefunctions of these three 
levels (right, Fig. 4a–c).

Half-integer level shift between two classes of vortex
We have observed the distinction in the energy spectra of vortex 
bound states in topological and ordinary vortices. In an ordinary 
vortex core (Fig. 5a), only the conventional bands contribute to the 
quasiparticle excitations, and the bound states have eigenvalues 
of angular momentum that are half-odd integer as a result of the 
addition of an integer orbital contribution L and half-odd-integer 

vorticity contribution τ (for vortices with an odd winding number). 
Accordingly, the energy eigenvalues of CBSs are also approximately 
half-odd-integer quantized, that is, Eν = νΔ2/EF (ν = ±1/2, ±3/2, 
±5/2, …), where ν is the eigenvalue of angular momentum21–23. 
On the other hand, topological vortices (Fig. 5b) that arise due to 
superconductivity in Dirac surface states gain an additional half-
odd-integer contribution S to the angular momentum due to intrin-
sic spin carried by Dirac fermions4,32,42. This leads to a half-integer 
shift of the angular momentum, so that it becomes an integer, and 
the energy values of the bound states are integer quantized by 
Eν = νΔ2/EF (ν = 0, ±1, ±2, ±3, …). Majorana zero modes can then 
be regarded as a special zero-energy CBS for a topological vortex 
with ν = 0, as long as the zero-energy CBS is an equal-weight mix-
ture of particle/hole components, and the spin degree of freedom is 
frozen out24.

Following this discussion, the class to which a vortex belongs 
can be determined by the nature of the electron states that com-
prise it, either the Dirac surface states or conventional bulk bands. 
Considering the intrinsic inhomogeneity25–28 of FeTe0.55Se0.45, which 
is a telluride/selenide alloy, the character of the electronic states on 
the surface can vary across the sample. We did find experimentally 
that the two distinct classes of vortex coexist in a small area within 
several hundred nanometres (Fig. 1a and Supplementary Fig. 8). We 
propose that Dirac surface states disappear in some regions of the 
(001) sample surface, moving deeper into the crystal, but remain 
intact in other regions (Supplementary Fig. 10a). The coexistence 
of topological and conventional regions in the same crystal is also 
supported by our vortex class statistics measurements on the three 
regions shown in Supplementary Fig. 8 and Supplementary Section V.  
This analysis demonstrates that the vortices that belong to the 
same class, either topological or ordinary, usually group together. 
Theoretically, there are several ways proposed that can eliminate 
the Dirac surface states on the (001) surface of a strong topologi-
cal insulator. One mechanism is to drive the material into a trivial 
insulating/metallic phase by closing the bulk topological gap43–45. 
Another way is to drive the material into a weak topological insulat-
ing phase by inducing an even number of topological band inver-
sions at its time-reversal invariant momenta46–48. As discussed in the 
following, both can occur locally in FeTe0.55Se0.45.

First, the combined effects of inhomogeneous scattering and the 
small bulk topological gap can induce trivial insulating or metal-
lic regions in FeTe0.55Se0.45. Although it is known that Dirac surface 
states cannot be destroyed by weak non-magnetic scattering43 due 
to the protection by time-reversal symmetry in a Z2 topological 
insulator46, there is a possibility to break down this topological pro-
tection by overcoming the bulk topological gap. This gap is very 
small in FeTe0.55Se0.45 (refs. 44,45), as shown by previous high-resolu-
tion ARPES measurements16 that give an estimate of only ~20 meV, 
one order of magnitude smaller than the gap in Bi2Se3 (ref. 43).  
Non-magnetic scattering, such as chemical disorder or impurities 
beneath the sample surface, can drive the material into a trivial 
insulating/metallic phase in the vicinity of the scatters, when their 
potential strength is larger than the topological gap44,45. Accordingly, 
the vortices appearing in the conventional regions are dominated by 
conventional bands that contain half-odd-integer quantized CBSs. 
This scenario is consistent with a recent experiment on another 
compound, Li0.84Fe0.16OHFeSe (ref. 18), where MZMs appear in 
impurity-free vortices and are absent in defect-pinned vortices.

Second, the topological band structure of FeTe0.55Se0.45 originates 
from the kz dispersion of the pz orbital with odd parity, which anti-
crosses with the dxz orbital with even parity along Γ–Z. A single 
topological band inversion occurs at Z, leading to a strong topologi-
cal insulating phase in this compound13–17. However, under a larger 
amount of tellurium substitution, the pz orbital may shift completely 
below the dxz orbital along Γ–Z (refs. 14,48), inducing a second topo-
logical band inversion around Γ. Consequently, Dirac surface states 

a Case #1 Ordinary vortex

b Case #2 Topological vortex

0 1 2 3–1–2–3

0 +1–1 +3
ν

+2–2–3
Half-integer level shift

Bulk Surfa
ce

Surfa
ce

E = 0

Bulk

E = 0

EL/∆E

Fig. 5 | Half-integer level shift around a MZM. Left: schematic plots of 
the underlying surface and bulk band structure for different cases. Right: 
schematic plots of the subgap CBSs. The blue axis marks the eigenvalues of 
vortex planar angular momentum. a, When the underlying band structure 
is topologically trivial, the vortices behave ordinarily. The bulk bands with 
spin degeneracy dominate quasiparticle excitations inside the vortex. Due 
to the absence of Dirac electrons on the sample surface, quasiparticles can 
only feel the phase winding of the ordinary superconducting vortex, which 
leads to half-odd-integer angular momenta and related half-odd-integer 
quantized CBSs. b, When the underlying band structure is dominated 
by the topological surface state, vortex quasiparticle excitations gain an 
additional angular momentum from the Dirac electrons. This induces a 
half-integer level shift of those CBSs as compared with a, and the zero-
energy bound state becomes a MZM due to the effective spinless p-wave-
like pairing induced on the Dirac surface states. If the chemical potential in 
b is tuned to the Dirac point, which is the zero doping limit, all the CBSs are 
pushed towards the gap edge, leaving the MZM isolated at zero energy  
(for details see Supplementary Fig. 6).
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disappear on the top surfaces of such a weak topological insulator, 
as previously proposed for the Fe(Te,Se) monolayer14. Indeed, two 
recent ARPES experiments observed the signature of topologi-
cal band inversion around Γ on Fe(Te,Se) monolayers49,50. In our 
case, the intrinsic inhomogeneity25–28 of FeTe0.55Se0.45 might cause 
the second topological band inversion around Γ to occur in some 
regions48. A more comprehensive discussion about the additional 
mechanisms of the presence or absence of MZMs in a vortex core is 
provided in Supplementary Section VI and Supplementary Fig. 10.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0630-5.

Data availability
The data that support the findings of this study are available from 
the corresponding authors on reasonable request.
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