
needed to appropriately discriminate between these possibilities in
the present case.

We have investigated by inelastic neutron scattering the magnetic
excitations in the field-driven ordered phase of TlCuCl3. Our main
result is the evidence of a gapless mode emerging at the field-
induced magnetic Bragg point. The gapless mode is accompanied by
two renormalized Zeeman modes at higher energies. We find almost
complete agreement between experimental observations and theor-
etical predictions that are based on a BEC theory. However, this
theory does not involve a dilute gas cooled below the de Broglie
temperature, but rather dimer states split at high magnetic fields.
We hope that our approach to the study of a fundamental quantum
effect like BEC will enable further theoretical and experimental
work. A

Methods
The inelastic neutron scattering investigations up to H ¼ 14 T were performed on the
three-axis spectrometer V2 at the Hahn-Meitner-Institut, Germany. Preliminary
measurements up to H ¼ 6 T were performed on the three-axis spectrometers IN14 at the
Institut Laue-Langevin, France, and on TASP at the spallation neutron source SINQ,
Switzerland. All instruments featured initial and final energy selection by pyrolytic
graphite (0 0 2) crystals. The measurements were performed at fixed final energy, with a
cooled beryllium filter in front of the analyser set at 4.7 meV. Standard instrumental
configurations with 40 0 -open-open and 60 0 -60 0 -60 0 horizontal collimation were adopted.
The typical elastic energy resolution was 0.2 meV (full-width at half-maximum).
Superconducting cryomagnets with split coils were adopted on all instruments. The
cooling of the sample in the cryomagnets was achieved by 4He flow through a root pump
(T ¼ 1.5 K) and by a 3He–4He dilution insert system (T ¼ 50 mK), producing the data set
presented in the text. Further details of the sample environment will be provided
elsewhere.
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Magnesium diboride, MgB2, has the highest transition tempera-
ture (Tc 5 39 K) of the known metallic superconductors1.
Whether the anomalously high Tc can be described within the
conventional BCS (Bardeen–Cooper–Schrieffer) framework2 has
been debated. The key to understanding superconductivity lies
with the ‘superconducting energy gap’ associated with the for-
mation of the superconducting pairs. Recently, the existence of
two kinds of superconducting gaps in MgB2 has been suggested
by several experiments3–9; this is in contrast to both conventional
and high-Tc superconductors. A clear demonstration of two gaps
has not yet been made because the previous experiments lacked the
ability to resolve the momentum of the superconducting electrons.
Here we report direct experimental evidence for the two-band
superconductivity in MgB2, by separately observing the super-
conducting gaps of the j and p bands (as well as a surface band).
The gaps have distinctly different sizes, which unambiguously
establishes MgB2 as a two-gap superconductor10,11.

Soon after the discovery of MgB2, many experimental studies
indicated that MgB2 should be basically classified as a conventional
phonon-mediated BCS superconductor12–16. Recently, however, its
deviation from the simple BCS framework has been inferred from
several experiments using high-quality samples3–9,17. The most
striking deviation is the complex superconducting order parameter,
referred to as the ‘multi-component superconducting gap’ or
‘multi-gap’, indicating that two or more superconducting gaps
with different sizes develop simultaneously at T c between the
occupied and unoccupied electronic states10,11. This multi-gap
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behaviour has been analysed by several models10–13,18–20 based on the
different role of j and p bands10,11,18 or surface and bulk12,13,19, or the
strongly anisotropic coupling to lattice vibrations (phonons)20.

Of these, the two-band model10,11 may be theoretically described
as follows: electrons in the j bands are strongly coupled to phonons
confined within the honeycombed boron layer and give rise to a
large gap, whereas a relatively small gap opens in the p band due to
the weak electron–phonon coupling. There has been no direct
experimental evidence, however, that establishes the two different
gaps originating in the j and p bands. Previous experiments such
as the specific-heat measurements3,4, and Raman6,7 and tunnelling8,9

spectroscopies provide the information averaged over all the
momentum space and therefore could not separate the different
bands. In contrast, the present high-resolution angle-resolved
photoemission spectroscopy (ARPES) experiment has succeeded
in resolving the j and p bands and directly observing the super-
conducting gaps.

Figure 1a shows ARPES spectra of MgB2 measured along the
GKM(AHL) direction (see inset to Fig. 1a) with 28-eV photons at
45 K. We find several band dispersions which cross the Fermi level
(E F) in this momentum region. To visualize the band dispersion
more clearly, we plot the ARPES intensity as a function of wave
vector and binding energy in Fig. 1b. We find three distinct band
dispersions. The first is a large electron-like band which crosses EF

near the K(H) point. The second is a hole-like dispersion centred at
G(A), crossing EF near G(A). The third is a small electron-like pocket
centred at G(A).

This result is consistent with the previous ARPES report21.
According to the band calculation22, the first and second bands
are attributed to the boron 2pp and 2pj bands, respectively. The
rather broad feature of the p band reflects its three-dimensional
nature, while the sharp j band shows the strong two-dimensional
character. The third band, which is not seen in the band calculation,
has been ascribed to a surface state21. The observed clear difference
in the EF-crossing point among the three bands enables us to
perform precise ARPES measurements on the superconducting
gaps of different bands separately.

We measured ARPES spectra in the vicinity of EF at three different
points on the Fermi surfaces (points A, B and C in Fig. 1b) at two
temperatures below and above Tc (17 K and 45 K). The results are
shown in Fig. 2. The ARPES spectrum from the j band shows a
remarkable temperature dependence which cannot be explained by
the simple temperature effect due to the Fermi–Dirac function. The
midpoint of the leading edge in the spectrum at 17 K is not at EF but
is shifted by about 2 meV toward the higher binding energy, while
the leading-edge midpoint at 45 K is located at EF. This clearly
indicates that a superconducting gap opens at 17 K in the j band.
We observe a small piling-up effect of spectral weight around 7–
15 meV in the 17 K spectrum, which indicates the emergence of a
superconducting coherent peak below Tc , as observed in other
superconductors23. We find it surprising that a similar gap-opening
behaviour is observed in the surface band as seen in Fig. 2. This
point will be discussed later.

In contrast to the j and surface bands, the p band does not show a
clear gap-opening behaviour. The shift of the midpoint of the
leading edge at 17 K is much less (0–1 meV) and no clear piling-
up effect around 10 meV is seen, suggesting that no or a very small
superconducting gap opens in the p band. This reveals the clear
difference in the contribution to the superconductivity among three
bands, supporting the multi-band superconductivity scenario in
MgB2 (refs 10, 11).

To estimate the gap size (D), we numerically fitted the spectrum
using the BCS spectral function with an integrated-type background
representing the incoherent part of the spectral function and
inelastically scattered electrons, multiplied by the Fermi–Dirac
function and convoluted with the energy resolution, as has been
employed in high-Tc copper oxides24. As shown in Fig. 2, ARPES

Figure 1 Experimental band structure near E F of MgB2 obtained by ARPES. a, ARPES

spectra of MgB2 measured at 45 K along the GKM(AHL) direction in the Brillouin zone

(inset to a) with 28-eV photons. b, ARPES-intensity plot of MgB2 as a function of wave

vector and binding energy. White arrows A, B and C indicate the location of Fermi-level

crossing points for the p, j and surface bands. Inset to b shows the schematic view of the

band dispersion; S indicates surface. Single crystals of MgB2 were grown in a closed

stainless steel tube filled with argon gas. The tube was heated up to 1,200 8C and slowly

cooled down to room temperature in 12 h. Details of sample preparation are described

elsewhere26. Magnetization measurement confirmed that crystals exhibit

superconductivity at 38 K with a transition width of DTc ¼ 0.8 K. The typical size of

crystals used in ARPES measurements is about 100 £ 100 £ 10 mm3. ARPES

measurements were performed using a SCIENTA SES-2002 spectrometer at the

undulator 4 m-NIM beam line at the Synchrotron Radiation Center, Wisconsin. The energy

and angular (momentum) resolution were set to 10 meV and 0.38 (0.01 Å21),

respectively. We obtained a clean surface for ARPES measurements by cleaving a single

crystal in situ along the (0001) plane in an ultrahigh vacuum (better than 2 £ 10210 torr).

The crystal orientation was determined by Laue X-ray diffraction before the ARPES

measurement. Polarization vector of photons was set parallel to the GKM(AHL) direction.
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spectra at 17 K for the j, p and surface bands are satisfactorily fitted
with gap sizes of D ¼ 6.5 ^ 0.5 meV, 1.5 ^ 0.5 meV, and
6.0 ^ 0.5 meV, respectively, with broadening factor of 1.0 meV for
the j and surface bands and 0.5 meV for the p band. A slight
deviation above EF observed for the j and surface bands may be due
to a normal metallic region at the surface25.

From the viewpoint of gap size, we consider that the present
ARPES experiment has observed ‘two’ gaps in MgB2 because the size
is almost the same between the j and surface bands. Thus far, many
experiments, in particular those using tunnelling spectroscopy, have
reported the multi-gap feature in MgB2 and the reported gap sizes
are roughly categorized into two groups: small and large super-
conducting gaps. The small gap has a value of 1–4 meVand the large
gap has a value of 5.5–10 meV. The present ARPES result shown
above seems to be consistent with these previous reports.

The two-gap nature in MgB2 reported by previous studies has
been interpreted by several models: (1) the simultaneous obser-
vation of the genuine bulk superconductivity and the weakened
superconductivity in the surface layer12,13; (2) the proximity effect in
a thin metallic surface layer19; (3) the strongly anisotropic coupling
to phonons20; (4) the contribution from the j and p bands, which
give the large and small gaps, respectively10,11; and (5) as for model
(4) but with opposite band contibutions, that is, the p band
produces a large gap18.

It is clear from the present ARPES results that the j and the
surface bands have a large gap of 6–7 meV whereas the p band shows
a small gap of 1–2 meV. Taking into account that the superconduc-
tivity of MgB2 is bulk in nature1,3, we conclude that the j band is
dominant in the superconductivity of MgB2 with a stronger
coupling to phonons, while the p band is less important to the
superconductivity with a much weaker coupling. This unambigu-

ously indicates that the two-band model10,11 describes the super-
conductivity of MgB2 most appropriately.

We also conclude from the present ARPES results that the large
gap observed by surface-sensitive techniques such as tunnelling
spectroscopy may be due to both the j and the surface bands,
because the gap size is almost the same for the two bands. A large
variation in the size of the large gap may stem from the various
surface conditions, depending on the surface preparation method.
Although why the surface band exhibits a similar gap size to the j
band is unclear at present, the proximity of the two bands in the
momentum and energy spaces as seen in Fig. 1 may account for it,
because the interaction between the surface and j bands is expected
to be larger than that between the surface and p bands. A
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Figure 2 Temperature dependence of ARPES spectra near E F of MgB2. Spectra are

measured at three points A, B and C in Fig. 1b, which correspond to the p, j and surface

bands, respectively. Measurements were done at 17 K (blue circles) and 45 K (red circles).

Spectra are normalized by the area under the curve from 50 meV above E F to 200 meV

below E F. Blue and red lines on the spectra show the results of numerical fitting at 17 K

and 45 K, respectively. The reproducibility of experimental data has been confirmed by

measuring the spectra with the cycling temperature of the sample across Tc.
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