The Fermi surface—the set of points in momentum space describing gapless electronic excitations—is a central concept in the theory of metals. In this context, the normal ‘metallic’ state of the optimally doped high-temperature superconductors is not very unusual: above the superconducting transition temperature, T_c, there is evidence for a large Fermi surface$^{-3}$ despite the absence of well-defined elementary excitations. In contrast, the normal state of underdoped high-temperature superconductors differs in that there is evidence for a ‘pseudogap’ above T_c (refs 4–6). Here we examine, using angle-resolved photoemission spectroscopy, the temperature dependence of the Fermi surface in underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$. We find that, on cooling the sample, the pseudogap opens up at different temperatures for different points in momentum space. This leads to an initial breakup of the Fermi surface, at a temperature T_s, into disconnected arcs, which then shrink with decreasing temperature before collapsing to the point nodes of the superconducting ground state below T_c. This unusual behaviour, where the Fermi surface does not form a continuous contour in momentum space as in conventional metals, is unprecedented in that it occurs in the absence of long-range order. Moreover, although the superconducting gap below T_c evolves smoothly into the pseudogap above T_s, the pseudogap differs in its unusual temperature-dependendent anisotropy, implying an intimate but non-trivial relationship between the pseudogap and the superconducting gap.

Angle-resolved photoemission spectroscopy (ARPES) probes the occupied part of the electron spectrum, and for quasi-two-dimensional systems its intensity $I(k, \omega)$ as a function of momentum k and frequency ω is proportional to the Fermi function $f(\omega)$ times the one-electron spectral function $A(k, \omega)$ (ref. 3). In Fig. 1a–c, the solid curves are ARPS spectra for an underdoped $85\, \text{K}$ sample of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212) at three k points a, b and c, respectively, on the Fermi surface (determined above T'_s) for various temperatures. (Here the Bi2212 samples are distinguished by their onset T_c in this case, $14\, \text{K}$.) We look first at the superconducting state data at $T = 14\, \text{K}$. At each point, the sample spectra are pushed back to positive binding energy (\omega < 0) due to the superconducting gap, and we also see a resolution-limited peak associated with a well-defined quasiparticle excitation in the superconducting state. The superconducting gap, as estimated by the position of the midpoint of the leading edge of the spectrum, is seen to decrease as one moves from point ‘a’ near M to ‘b’ to ‘c’, closer to the diagonal $\Gamma - \text{Y}$ direction (notation is described in Fig. 1 legend), consistent with a $d_{x^2-y^2}$ order parameter. Next, we consider the changes in Fig. 1 as a function of increasing T. At each k point the quasiparticle

Destruction of the Fermi surface in underdoped high-T_c superconductors

M. R. Norman*, H. Ding$^+$, M. Randeria, J. C. Campuzano$^{*+}$, T. Yokoya$^{*+}$, T. Takeuchi, T. Takahashi*, T. Mochiku*, K. Kadowaki*, P. Guptasarma & D. G. Hinks*

* Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
† Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
‡ Tata Institute of Fundamental Research, Mumbai 400005, India
§ Department of Physics, Tohoku University, 980 Sendai, Japan
¶ Department of Crystalline Materials Science, Nagoya University, Nagoya 464-01, Japan
National Research Institute for Metals, Sengen, Tsukuba, Ibaraki 305, Japan
Institute of Materials Science, University of Tsukuba, Ibaraki 305, Japan

2. Kuhn, F. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
8. Kuhn, F. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
9. Kuhn, J. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
10. Kuhn, J. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
11. Kuhn, J. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
12. Kuhn, J. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
13. Kuhn, J. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
14. Kuhn, J. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
15. Kuhn, J. R., Lin, H. & Loranz, D. Gain calibrating nonuniform image-array data using only the image profile obtained here is consistent with those earlier results.
peak disappears above \(T_c\), but the suppression of spectral weight—the pseudogap—persists well above \(T_c\), as noted in earlier work\(^4\).

The striking new feature which is apparent from Fig. 1 is that the pseudogap at different \(k\) points closes at different temperatures, with larger gaps persisting to higher \(T_s\). At point \(a\), near \(M\), there is a pseudogap at all \(T_s\) below 180 K, at which the Bi2212 leading edge matches Pt. We take this as the definition of pseudogap at all \(T_s\). We will say this Fermi surface to point \(b\) the sample leading edge matches Pt at 120 K, which is smaller than \(T_s\). Continuing to point \(c\), about halfway to the diagonal direction, we find that the Bi2212 and Pt leading edges match at an even lower temperature of 95 K. In addition, we have measured spectra on the same sample along the Fermi contour near the \(G\) line and found no gap at any \(T_s\) even below \(T_c\), consistent with \(d_{x^2-y^2}\) anisotropy.

One simple way to quantify the behaviour of the gap is to plot the midpoint of the leading edge of the spectrum (Fig. 1e). We will say that the pseudogap has closed at a \(k\) point when the midpoint equals zero energy, in accordance with the discussion above. From this plot, we find that the pseudogap closes at point \(a\) at a \(T\) above 180 K, at point \(b\) at 120 K, and at point \(c\) just below 95 K. If we now view these data as a function of decreasing \(T\), the picture of Fig. 2 clearly emerges. The pseudogap suppression first opens up near \((\pi, 0)\) and progressively removes larger portions of the Fermi contour, leading to gapless arcs which shrink with decreasing \(T\). We note that midpoints with negative binding energy, particularly for \(k\) point \(c\), indicate the formation of a peak in the spectral function at \(\omega = 0\) as \(T\) increases.

We see similar results on other underdoped samples of Bi2212. For example, in the upper panel of Fig. 3 we show midpoints for a 77 K underdoped sample at two \(k\) points shown in the inset, with behaviour very similar to that of the 85 K sample of Fig. 1. This behaviour may be compared with that of the more conventional \(T\)-dependence of an overdoped 87 K sample as shown in the lower panel. Gaps with different magnitudes, one at a \(k\) point near \(M\) and the other halfway towards the \(G\) direction, go to zero at the same temperature, very close to \(T_c\); we have also seen this in other overdoped samples. This is in marked contrast with the new results on underdoped samples. Further, to show that the negative midpoints at high \(T_s\) are not unusual, we plot those for an 82 K overdoped sample at the \(M\) Fermi point as filled symbols in the lower panel of Fig. 3. The midpoint goes to zero at about \(T_c\).

![Figure 1](image1)

Figure 1 Data obtained on single crystals of Bi2212 grown by the travelling solvent floating-zone method. Doping was achieved by adjusting the oxygen partial pressure during annealing with samples labelled by their onset \(T_c\). Measurements were carried out at the Synchrotron Radiation Center, Wisconsin, using a high resolution 4-m normal incidence monochromator with 22-eV photons and an energy resolution of 20 meV (full-width at half-maximum). The spectra in a–c are taken at three \(k\) points in the Brillouin zone, shown in d, for an 85 K underdoped Bi2212 sample at various temperatures (solid curves). (The \(Y\) quadrant was studied to minimize effects due to the superlattice\(^3\).) Our notation is \(T = (0, 0)\), \(M = (\pi, 0)\) and \(Y = (\pi, \pi)\), in units of \(1/a\), where \(a\) is the Cu–Cu distance, and \(FM\) is along the CuO bond direction. The dotted curves are reference spectra from polycrystalline Pt (in electrical contact with the sample) used to determine the chemical potential (zero binding energy). Note the closing of the spectral gap at different \(T\) for different \(k\). This feature is also apparent in the plot (e) of the midpoint of the leading edge of the spectra as a function of \(T\).

![Figure 2](image2)

Figure 2 Schematic illustration of the temperature evolution of the Fermi surface in underdoped copper oxides. The \(d^\ast\)-wave node below \(T_c\) (left panel) becomes a gapless arc above \(T_c\) (middle panel) which expands with increasing \(T\) to form the full Fermi surface at \(T_s\) (right panel).

![Figure 3](image3)

Figure 3 Midpoints of the leading edge of the ARPES spectra of Bi2212 samples, plotted against temperature. Top panel, data for a 77 K underdoped (UD) sample, again showing closure of the spectral gap at different \(T\) for different \(k\). This behaviour can be contrasted with that of overdoped samples (bottom panel) where all gaps close near \(T_c\).
sharp quasiparticle peak disappears above the Fermi momentum.

Before discussing the implications of our results, we introduce a visualization aid that makes these results easier to understand. This symmetrization method, described in Fig. 4 legend, effectively eliminates the Fermi function f from ARPES data and permits us to focus directly on the spectral function A. We have extensively checked this method, and have studied in detail the errors introduced by incorrect determination of either the chemical potential or the Fermi momentum k_f (which lead to spurious narrow features in the symmetrized spectra); we have also studied the effect of the small (1° radius) k-window of the experiment (this effect was found to be small).

In Fig. 4a–c we show symmetrized spectra for the 85 K underdoped sample corresponding to the raw data of Fig. 1a–c, respectively. To emphasize that the symmetry is put in by hand, we show $\omega > 0$ curve as a dotted line. In Fig. 4a at k point \mathbf{a} near \mathbf{M}, the sharp quasiparticle peak disappears above T_c, but a strong pseudogap suppression, on the same scale as the superconducting gap, persists all the way up to 180 K (T^*). In Fig. 4b and c we again see pseudogap depressions on the scale of the superconducting gaps at those points, but the pseudogap fills up at lower temperatures: 120 K at b and 95 K at c. In Fig. 4c, moreover, a spectral peak at zero energy emerges as T is raised. All of the conclusions drawn from the raw data in Figs 1 and 3 are obvious from the simple symmetrization analysis of Fig. 4.

We now discuss why the T dependence of the Fermi arc is not simply due to inelastic scattering above T_c, broadening the d-wave node. From Fig. 4, it is apparent that the gap ‘fills in’ for k points a and b as T is raised, whereas it ‘closes’ for k point c as a peak at zero energy emerges. This can be seen more clearly in Fig. 5, where we show symmetrized spectra for a 75 K underdoped sample of Bi2212 at two k points (similar to points a and c of Fig. 4) as a function of temperature. For the first point (I; top panel), the spectral feature at the gap edge does not move with temperature, whereas for the latter point (II; bottom panel), it clearly moves in to zero energy.

A unique feature of ARPES is that it provides k-resolved information. We believe that the unusual T-dependence of the pseudogap anisotropy will be a very important factor in reconciling the different crossovers seen in the pseudogap regime by different probes, each of which measures a k-sum weighted with a different set of k-dependent matrix elements or kinematical factors (such as Fermi velocity). For instance, quantities which involve the Fermi velocity, such as the d.c. resistivity above T_c and the penetration depth below T_c (superfluid density), should be sensitive to the region near the ΓY direction, and would thus be affected by the behaviour we see at k point c. Other types of measurements (such as specific heat and tunnelling) are more ‘zone-averaged’ and will have significant contributions from k points a and b as well, so should see a more pronounced pseudogap effect. Other data that we have indicate that the region in the Brillouin zone where behaviour like k-point c is seen shrinks as the doping is reduced, and thus appears to be correlated with the loss of superfluid density. Further, we speculate that the disconnected Fermi arcs should have a profound influence on magnetotransport, given the lack of a continuous Fermi contour in momentum space.

We emphasize that the Fermi arcs do not imply the existence of hole pockets (that is, small closed contours) centred about $(\pi/2, \pi/2)$, as suggested by some theories of lightly doped Mott insulators (for a review, see ref. 9). In the samples studied here (and more heavily underdoped ones) we have carefully searched for hole pockets and for shadow band dispersion, but found no evidence for either.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig4}
\caption{Results of symmetrization analyses. Given ARPES data described\cite{notes} by $I(\omega) = \sum_{\mathbf{k}} f(\omega) A(\mathbf{k}, \omega)$ (with the sum over a small momentum window about the Fermi momentum \mathbf{k}_f), we can generate the symmetrized spectrum $I(\omega) + I(\omega)$. Making the reasonable assumption of particle-hole (p–h) symmetry for a small range of ω and \mathbf{k}, we have $A(\mathbf{k}, \omega) = A(-\mathbf{k}, -\omega)$ for $|\omega| > |\mathbf{k}|$, less than few tens of meV (where \mathbf{k} are the bare energies). It then follows, using the identity $I(-\omega) = 1 - I(\omega)$, that $I(\omega) + I(\omega) = \sum_{\mathbf{k}} A(\mathbf{k}, \omega)$ which is true even after convolution with a (symmetric) energy resolution function. This symmetrized spectrum coincides with the raw data for $\omega < -\Delta_{\text{Pt}}$, where Δ_{Pt} is the 10–90% width of the Pt leading edge, which includes the effects of both temperature and resolution. Non-trivial information is obtained for the range $|\omega| < \Delta_{\text{Pt}}$, which is then the scale on which p–h symmetry has to be valid. The curves are symmetrized spectra corresponding to the raw spectra of Fig. 1. The gap closing in the raw spectrum of Fig. 1 corresponds to where the pseudogap depression disappears in the symmetrized spectrum. We note the appearance of a spectral peak at higher temperatures in c.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig5}
\caption{Symmetrized spectra for a 75 K underdoped sample of Bi2212, at three different temperatures. The k points are analogous to a and c of Fig. 4. We note that the spectral feature at the gap edge does not move in energy with increasing T for point I (top panel), but does move in to zero energy for point II (bottom panel).}
\end{figure}
high temperature (\(\geq 4.2\) K) operation and response over a larger bandwidth, from which a diversity of applications may result.

We have described elsewhere the techniques used to fabricate and measure devices of the type reported here. An electron micrograph and a schematic view of our nanomechanical electrometer is shown in Fig. 1. It consists of three principal components: electrodes, which experience an attractive force when a small charge is applied; a compliant mechanical element that moves in response to this force; and a displacement detector that provides a means of monitoring the motion. The mechanical element is a two-element torsional resonator with a spring constant \(G_0\) and moment \(I\). Its fundamental torsional resonance frequency is \(\omega_0\), and its mechanical loss is parametrized by a quality factor \(Q = \omega_0/\Delta\omega\), where \(\Delta\omega\) is the frequency width of the resonant response at half maximum.

The device includes three electrodes: two for inducing and measuring the mechanical response of the structure, and one for coupling charge, which alters this response. Two electrodes consist of metal loops tracing the boundaries of the outer and inner paddles, while the opposing metal gate electrode is fixed to the stationary substrate, at a distance \(d\) from the inner paddle. The mutual capacitance between the gate electrode and the inner paddle is represented by the parameter \(C\). To measure a small charge, the gate electrode is biased by a charge \(q_0\) which yields an electrostatic force \(F_q = q_0/Cd\). Small changes in the coupled charge, \(\delta q\), about the bias point \(q_0\) alter the force by an amount \(f_v = 2\delta qE_v\), where \(E_v\) is the equilibrium electric field. This results in an effective torsional spring constant \(G_{eff} = G_0 + g\), where \(g = -r\delta qE_v/\delta \theta\) (\(\theta\) is the paddle torsion angle, \(E_v\) the field component along the unit vector \(b\), and \(r\) the paddle's radial dimension). This gives rise to a shift away from the unperturbed resonance frequency, \(\delta\omega/\omega_0 = g/2G_0\).

Acknowledgements. We thank J. Sadleir and A. Kaminski for their help. This work was supported by the US Dept of Energy Basic Energy Sciences, the US NSF, the NSF Science and Technology Center for Superconductivity, the CREST of IST, and the Ministry of Education, Science and Culture of Japan. The Synchrotron Radiation Center is supported by the NSF.

Correspondence and requests for materials should be addressed to J.C.C. (e-mail: jcc@uic.edu).

Synchrotron Radiation Center is supported by the NSF.

10. Engelbrecht, J. K., Nazarenko, A., Randeria, M. & Dagotto, E. Pseudogap above \(T_c\) due to spinon pairing\(^{11}\). There are other proposals in which the pseudogap has a completely different (non-pairing) origin from the superconducting gap. Given the smooth evolution that we find through \(T_c\), such proposals seem difficult to reconcile with our results.

Received 23 July; accepted 22 December 1997.

Letters to Nature