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Interatomic Coulomb interaction and electron nematic bond order in FeSe
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Despite having the simplest atomic structure, bulk FeSe has an observed electronic structure with the largest
deviation from the band theory predictions among all Fe-based superconductors and exhibits a low-temperature
nematic electronic state without intervening magnetic order. We show that the Fe-Fe interatomic Coulomb
repulsion V offers a natural explanation for the puzzling electron correlation effects in FeSe superconductors.
It produces a strongly renormalized low-energy band structure where the van Hove singularity sits remarkably
close to Fermi level in the high-temperature electron liquid phase as observed experimentally. This proximity
enables the quantum fluctuations in V to induce a rotational symmetry breaking electronic bond order in the
d-wave channel. We argue that this emergent low-temperature d-wave bond nematic state, different from the
commonly discussed ferro-orbital order and spin nematicity, has been observed recently by several angle-resolved
photoemission experiments detecting the lifting of the band degeneracies at high-symmetry points in the Brillouin
zone. We present a symmetry analysis of the space group and identify the hidden antiunitary T symmetry that
protects the band degeneracy and the electronic order/interaction that can break the symmetry and lift the
degeneracy. We show that the d-wave nematic bond order, together with the spin-orbit coupling, provide a
unique explanation of the temperature dependence, momentum space anisotropy, and domain effects observed
experimentally. We discuss the implications of our findings on the structural transition, the absence of magnetic
order, and the intricate competition between nematicity and superconductivity in FeSe superconductors.
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I. INTRODUCTION

The electron nematic phase with purely rotational symme-
try breaking is arguably the most unconventional and poorly
understood phase in Fe-based superconductors. In the Fe-
pnictides, the direct observation of nematic electronic structure
has been difficult since the orthorhombic lattice distortion
is immediately followed by the collinear spin density wave
(SDW) order that breaks, in addition to the spatial-orbital
rotational symmetry, lattice translation, spin-rotation, and
time-reversal symmetries. This leaves the origin of nematicity
highly debated [1] between the spin-nematic [2,3] and ferro-
orbital order [4–8] scenarios. In contrast, the Fe-chalcogenide
FeSe undergoes the tetragonal to orthorhombic structural tran-
sition at Ts = 87 K and the superconducting (SC) transition at
Tc = 9 K without any trace of magnetic order [9,10]. The latter
enabled direct observations of a rotational symmetry breaking
electronic structure at low temperatures by several angle-
resolved photoemission spectroscopy (ARPES) experiments
recently [11–15], unveiling that the SC transition in bulk FeSe
takes place from a highly unconventional nematic electronic
state. Understanding the microscopic origin of this nematic
order, its relation to the structural transition and magnetism is
the focus of this work.

In a nutshell, ARPES detects the splitting of symmetry
protected degeneracies between the dxz and dyz orbitals in the
band dispersions at the high-symmetry points M(π,0,0) and
the �(0,0,0)/Z(0,0,π ) in the original Brillouin zone (BZ).
More importantly, the corresponding degeneracy splitting
energy �M and ��/Z appear anisotropic in momentum space
with different temperature dependence. The nematic transition
is determined by the strongly T -dependent �M whose onset
coincides with [12,13] or is about 20 K above the structural
transition Ts [11,14]. �M rises with decreasing T and reaches

�M � 62 meV at 22 K, closely resembling the T dependence
of an energy scale associated with a symmetry breaking
order parameter. This is consistent with NMR [16,17], optics,
and transport measurements [18,19] detecting changes in the
electronic state near or above Ts . The splitting at the BZ
center, �� � 30 meV at 22 K, on the other hand, does not
break rotational symmetry above Ts . It is nearly T -independent
up to 150 K and insensitive to Ts and the onset of �M

[14]. It was thus conjectured [14] that the nematic order
in FeSe is not due to the commonly discussed ferro-orbital
order [16,20,21], but rather driven by a d-wave nematic bond
order [22] OdNB = ∑

k(cos kx − cos ky)[nxz(k) + nyz(k)].
We show in this work that the nearest neighbor Fe-Fe in-

teratomic Coulomb repulsion V can be the microscopic origin
for the emergent nematic order, the absence of magnetism,
and at a more fundamental level, the unusually large band
renormalization in bulk FeSe. The observed electronic struc-
ture of FeSe shows the largest deviation from the local density
approximation (LDA) band dispersions among all Fe-based
superconductors [23,24]. A remarkable difference from the
Fe-pnictides is that the renormalization is the strongest at low
energies near the Fermi level (EF ) as shown in Fig. 1, where
the LDA bands are compared with ARPES measurements.
Of crucial importance is the symmetry-protected van Hove
singularity (vHS) at M point created by the saddle point in
the band dispersions of the dxz/yz orbital. This is a quadratic
band touching point. Being more than 250 meV below EF

in LDA, it moves to a mere EvH � 25 meV below the Fermi
level in ARPES in the high temperature electron liquid phase
at T > Ts . We show that this correlation-induced proximity of
the vHS to EF , concomitant with the large mass enhancement
and the contraction of the FS pockets, sets the stage for the
electronic nematic transition near Ts that would ultimately gap
out the vHS and induce the structural transition.
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FIG. 1. (a) LDA band structure of FeSe. (b) Band dispersions
observed by ARPES in the symmetric phase at 120 K. (c) Band
degeneracy at high-symmetry points (�,M) among dxz,e (blue), dyz,e

(red), dxz,o (cyan), and dyz,o (green). (d) ARPES results in the nematic
state at 22 K. Red dashed lines near � are data taken at 120 K,
showing �� is nearly T -independent. Solid and dashed blue lines
near M correspond to the two domains.

What is the microscopic interaction that would drive the
vHS so close to EF in the high-temperature electron liquid
phase? The more than 10 times reduction in the distance
from the hole band top at � to the vHS at M (see Fig. 1)
cannot come from crystal field corrections induced by local
interactions [25,26] since it comes from the same atomic
orbital. Recent LDA+DMFT (dynamical meanfield theory)
calculations [27,28] show that the intra-atomic Hubbard U

and Hund’s rule coupling J would only produce a bandwidth
reduction (albeit with some orbital dependence) and a mass
enhancement by a factor of 3 ∼ 4 and leave the FS pockets
much larger than those observed by ARPES and quantum
oscillations [13]. Thus intra-atomic correlations alone cannot
account for the electronic structure near EF [21].

We find that the nearest-neighbor Coulomb V generates
directly hopping corrections to the band dispersion: it pushes
the vHS at M up toward EF and pulls down the top of the
hole band at �, resulting in a low energy dispersion consistent
with experiments. Both the FS pockets and the EvH in ARPES
can be produced by a V � 0.73 eV in the Hartree-Fock (HF)
theory with the bare LDA bandwidth W � 4.2 eV. When the
vHS is driven to EF (i.e., EvH = 0), a nematic instability of the
Pomeranchuk-type occurs in the symmetry breaking valence
bond channels. The leading instability corresponds precisely to
the d-wave nematic bond order. The proximity to this nematic
instability in bulk FeSe allows us to carry out a weak-coupling
analysis of the extended t-U -V Hubbard model and find
good agreement with experiments. Moreover, we find that the

V -renormalized low-energy band structure with the reduced
FS pockets promotes the d-wave nematicity while suppressing
the collinear SDW, which is a possible explanation for the
absence of magnetic order in bulk FeSe.

Since the symmetry content of the band degeneracies and
its relation to the nematic order in Fe-based superconductors
have not been understood, we begin in Sec. II with a systematic
symmetry analysis. We show that the band degeneracy at the
high-symmetry point originates from the existence of two-
dimensional irreducible representations of the space group
involving rotation, reflection, and glide symmetries [29]. We
then show that there exists two sets of “hidden” antiunitary
T symmetries (borrowing the T from an analogy to the time-
reversal symmetry) that protect the band degeneracies at the
� and M points, respectively. All possible degeneracy-lifting
interactions are then studied according to their symmetry and
symmetry-breaking properties in connection to the experimen-
tal findings on the temperature dependence, momentum space
anisotropy, and domain effects. The analysis shows that the
only interactions consistent with the experimental findings
are the atomic spin-orbit coupling governing the lifting of
the degeneracy at � without breaking the fourfold rotation
symmetry, and the rotational symmetry breaking d-wave
nematic bond order that splits the degeneracy at M . In Sec. III,
we develop the microscopic theory for the nematic state in
bulk FeSe based on the t-U -V Hubbard model and show that
the quantum fluctuations in the intersite correlation V leads
to the important band renormalization and in particular to
the dynamical V -driven proximity of the vHS to the Fermi
level. The nematic instability is studied in detail and the
obtained low-energy band structure and the Fermi surfaces
are compared to recent experimental results. In Sec. IV, we
provide a summary and discuss the implications of these
findings on FeSe films, the effects of electron doping, and the
interplay between nematicity and superconductivity, as well
as propose experimental tests for the theory.

II. BAND DEGENERACY, SYMMETRY CONTENT,
AND EFFECTIVE INTERACTIONS

We begin with a discussion on the symmetry-protected band
degeneracies at the � and M points illustrated in Fig. 1(c).
These symmetry properties dictate a rich and interesting
set of possible degeneracy-lifting interactions with different
implications on the momentum space anisotropy and the
domain effects. We will show that only the d-wave nematic
bond order is naturally consistent with the experimental
findings for the nematic transition.

The LDA electronic structure [Fig. 1(a)] can be described
by the tight-binding (TB) model down-folded to the Fe 3d-
manifold [30,31],

Ht =
∑
σ ijαβ

t
αβ

ij d
†
iασ djβσ +

∑
σ iα

εαd
†
iασ diασ , (1)

where εα is the on-site (crystal field) energy of an electron in
orbital α = (1,2,3,4,5) ≡ (xz,yz,x2 − y2,xy,z2) and t

αβ

ij is
the electron hopping integral between sites (i,j ) and orbitals
(α,β). The FeSe lattice structure contains two Fe atoms per unit
cell labeled by 	 = A and B. As a result, the TB Hamiltonian
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FIG. 2. (a) TB band of FeSe. Black solid lines are from P (k)
and red dashed lines are from P (k + Q). (b) BZ of FeSe. The larger
zone bounded by the black lines is the one-Fe BZ, while the smaller
zone with blue boundaries is the two-Fe BZ. Q corresponds to one
of reciprocal lattice vectors in the two-Fe BZ. The dashed black lines
with arrows indicate the trajectory over which the band dispersions
are plotted in (a).

in momentum space is

Ht =
∑
kσ

ψ†
σ (k)Ht (k)ψσ (k), (2)

where the basis vector ψσ (k) = [dA
σ (k),dB

σ (k)]T with d	
σ =

(d	
1σ ,d	

2σ , . . . ,d	
5σ ), and Ht (k) is a 10 × 10 matrix whose

eigenvalues govern the dispersion of the 10 LDA bands,

Ht (k)|n,k〉 = En
k |n,k〉, n = 1 . . . 10. (3)

The explicit form of Ht (k) and its parameters were derived
in Refs. [23,31] for FeSe. Note that to avoid confusion, we
use the k values confined to the reduced two-Fe BZ shown in
Fig. 2(b) to label the momentum eigenstates such that the four
M points are located at (±π,0) and (0, ± π ) of the original
one-Fe BZ.

A. Symmetry protected band degeneracies

The band degeneracies at � and M are related to three
important space group symmetries R ≡ S4,�d,Gs of the
atomic and electronic structure in Fe-based superconductors.
The most commonly discussed is the S4 = �z · C4 where a
fourfold rotation C4 is followed by a mirror reflection about
the x-y plane to account for the staggering positions of the
Se/As ions above and below the Fe plane. The spatial-orbital
operations of S4 is therefore

S4 : x → y,y → −x,z → −z,

d	
xz → −d	

yz,d
	
yz → d	

xz,d
	
xy → −d	

xy, (4)

d	
x2−y2 → −d	

x2−y2 ,d
	
z2 → d	

z2 .

The less discussed point group symmetry �d is a mirror
reflection about the diagonal xy-z plane and operates in the
spatial and orbital space according to

�d : x → y,y → x,z → z,

d	
xz → d	

yz,d
	
yz → d	

xz,d
	
xy → d	

xy, (5)

d	
x2−y2 → −d	

x2−y2 ,d
	
z2 → d	

z2 .

We will show that �d plays as important a role as S4 in the
origin of the band degeneracy. Finally, the glide symmetry [32]

of the space group Gs = �z · Tx,y is associated with the
translation by one lattice spacing along the x or y direction
(Tx,y) followed by a mirror reflection about the x-y plane.
Under the Gs = �z · Tx operation, A ↔ B and

Gs : x → x + a,y → y,z → −z,

dA
xz → −dB

xz,d
A
yz → −dB

yz,d
A
xy → dB

xy, (6)

dA
x2−y2 → dB

x2−y2 ,d
A
z2 → dB

z2 .

Since R is a symmetry of Ht (k), [Ht (k),R] = 0. Thus
R|n,k〉 = |n′,k′〉 is a simultaneous eigenstate of |n,k〉 at the
same energy En

k as given in Eq. (3). Note that in general
k′ = Rk 	= k. In particular, using Eqs. (4)–(6), it is simple to
show that in momentum space,

S4 : kx → −ky,ky → kx,

�d : kx → ky,ky → kx, (7)

Gs : kx → kx,ky → ky.

However, at certain high-symmetry points in the BZ (e.g., �

and M), it is possible to have k′ equal or equivalent to k under
the reciprocal lattice vector, resulting in symmetry related band
degeneracies. To elucidate this, we transform the basis vector
in Eq. (2) into the eigenbasis of the glide symmetry operator Gs

via a unitary rotation �σ (k) = Uψσ (k) = U [dA
σ (k),dB

σ (k)]T

[32], where U = 1√
2
(U1 U2
U1 −U2

) and

U1 =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠,

U2 =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎠.

The rotation mixes the orbitals defined on the A and B

sublattices and turns them into the corresponding even-odd
combinations, d

e/o
α = 1√

2
(dA

α ± dB
α ), that form the eigenstates

of Gs with ∓1 eigenvalues �σ (k) = [d−
σ (k),d+

σ (k)]T , where

d−/+
σ = (

de/o
xzσ ,de/o

yzσ ,d
o/e

x2−y2σ
,do/e

xyσ ,d
o/e

z2σ

)
. (8)

Since [Ht (k),Gs] = 0, U block-diagonalizes Ht (k) in the
�σ (k) basis,

Hk = UHt (k)U † =
(

P (k) 0
0 P (k + Q)

)
, (9)

where Q = (π,π ) is the reciprocal lattice vector for the
two-Fe unit cell. Equations (8) and (9) show that the lattice
translation symmetry corresponds to their invariance under
k → k + Q, provided the exchange e ↔ o is executed in
orbital space [33]. This results in the important identification
|de

ασ ,M ′〉 = |do
ασ ,M ′ + Q〉 = |do

ασ ,M〉 in the two-Fe zone.
Diagonalizing P (K) gives rise to five band dispersions with
−1 eigenvalue under glide operation, and shifting them by
k → k + Q generates the other five with +1 eigenvalue under
Gs . These 10-bands are shown in Fig. 2(a) for FeSe by the
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solid and the dashed lines, respectively. Note that the band
degeneracies at � are between the eigenstates within P (k)
(odd under Gs) or within P (k + Q) (even under Gs), whereas
the degeneracies at M are between the eigenstates of P (k) and
P (k + Q).

On general grounds, the twofold band degeneracies indicate
that the space group of a Hamiltonian H must have at least
one two-dimensional irreducible representation. Specifically,
there must exist at least two group generators, representable by
two matrices D1 and D2 with [H,D1] = [H,D2] = 0, that are
mutually noncommuting, [D1,D2] 	= 0. For the noninteracting
system described by the TB Hamiltonian Ht , these two
symmetries are manifestly the S4 and �d . When interactions
are included, the degeneracies will remain so long as a pair of
D1,2 exist and the two-dimensional irreducible representation
remains intact. For symmetry-breaking interactions that reduce
the space group down to an Abelian group with only one-
dimensional representations, the band degeneracies will be
lifted as we will show below.

Since the Hamiltonian Hk in Eq. (9) is manifestly
diagonal and the states in Eq. (8) are the eigenstates at �

and M points [29], the interplay between symmetry and band
degeneracy can be studied by focusing on the d

e/o
xz and d

e/o
yz

orbitals at � and M points separately. A similar analysis can
be performed for the d

e/o
xy orbitals. Equation (8) shows that

the degeneracies at � are within the e-e and o-o pairs, i.e.,
|de

xz/d
e
yz,�〉 and |do

xz/d
o
yz,�〉, whereas those at the M point,

with the M ′ folded to M by the reciprocal lattice operation
discussed above, are between the e-o components |do

xz/d
e
yz,M〉

and |de
xz/d

o
yz,M〉 as shown in Fig. 1(c). These degeneracies

clearly originate from the S4 and the �d symmetries defined
in Eqs.(4) and (5) since

S4

∣∣de
xz,�

〉 = −∣∣de
yz,�

〉
, S4

∣∣de
yz,�

〉 = ∣∣de
xz,�

〉
,

�d

∣∣de
xz,�

〉 = ∣∣de
yz,�

〉
, �d

∣∣de
yz,�

〉 = ∣∣de
xz,�

〉
,

and similarly for the odd components at �; and

S4

∣∣de
xz,M

〉 = −∣∣do
yz,M

〉
, S4

∣∣de
yz,M

〉 = ∣∣do
xz,M

〉
,

�d

∣∣de
xz,M

〉 = ∣∣do
yz,M

〉
, �d

∣∣de
yz,M

〉 = ∣∣do
xz,M

〉
,

and similarly when “e” and “o” are interchanged at M ,
which is equivalent to M ′ under the reciprocal lattice vector.
More importantly, it is crucial that the two symmetries do
not commute, i.e., [S4,�d ] 	= 0 such that they form the
two-dimensional irreducible representation of the space group
necessary for the twofold degeneracy.

For a deeper understanding that will facilitate the clas-
sification of the possible degeneracy-lifting interactions, let
us recall the eigenbasis of the glide symmetry �σ and
Eq. (8). In the decoupled subspace of xz and yz orbitals,�σ =
(de

xzσ ,do
xzσ ,de

yzσ ,do
yzσ )T . It is convenient to regard this four-

spinor as the direct product of two two-spinors spanning the
orbital space (xz/yz) and the sublattice space (e/o). In the rest
of the discussion, the spin indices are suppressed for notational
simplicity unless otherwise noted. The TB Hamiltonian Hk in
Eq. (9) can thus be written down explicitly up to constants at
� and M points,

H� = λ�σ0 ⊗ τz, HM = λMσz ⊗ τz, (10)

where σi and τi are Pauli matrices acting in the orbital and
sublattice spaces, respectively; and λ� and λM are half the
energy separations between the pair of degenerate points at �

and M . In this representation, the symmetry operators are

(S4,�d,Gs)� = (−iσy ⊗ τ0,σx ⊗ τ0,σ0 ⊗ τz), (11)

(S4,�d,Gs)M = (−iσy ⊗ τx,σx ⊗ τx,σ0 ⊗ τz). (12)

They commute with H�/M correspondingly.
Next, we show that the band degeneracies at � and M

are protected by nonunitary symmetries in very much the
same way that the time-reversal symmetry protects the Z2

topological insulators [34]. Note that the direct product of the
Pauli matrices comprises the identity and 15 generators. A
given H0 = H�/M anticommutes with eight of the other 14
operators and commutes with the remaining six. Remarkably,
the eight operators organize into two sets of four operators;
each forms an independent Clifford algebra with H0 and is
protected by the hidden antiunitary symmetry T1 or T2 with
T 2

1,2 = −1, respectively. We can therefore group the generators
according to the following:

H0,︸︷︷︸
T1 : even
T2 : even

H1, . . . ,H4︸ ︷︷ ︸
even
odd

,H5, . . . ,H8︸ ︷︷ ︸
odd
even

,H9, . . . ,H14︸ ︷︷ ︸
odd
odd

, (13)

where [H0,H9,...,14] = 0, and

{H0,H1,...,4} = 0, T1H0,1,...,4T
−1

1 = H0,1,...,4,

{H0,H5,...,8} = 0, T2H0,5,...,8T
−1

2 = H0,5,...,8,
(14)

T1H5,...,14T
−1

1 = −H5,...,14,

T2H1,...,4,9,...14T
−1

2 = −H1,...,4,9,...14.

Thus the twofold degeneracy of the quantum states at � and M

in H0 is protected by at least one necessary nonunitary sym-
metry T ∈ (T1,T2), analogous to Kramers doublet (|α〉,T |α〉)
protected by the global nonunitary time-reversal symmetry.
Specifically, we find that for H� ,

T �
1 = iσyK ⊗ τ0, T �

2 = iσyK ⊗ τz, (15)

where K is the complex conjugation operator. They are effec-
tive time-reversal operators in the orbital angular momentum
channel embedded symmetrically and antisymmetrically into
the sublattice space respectively. Operators that are even under
T �

1,2 are

T �
1 − even : H�,σ0 ⊗ τx,σx ⊗ τy,σy ⊗ τy,σz ⊗ τy

T �
2 − even : H�,σ0 ⊗ τy,σx ⊗ τx,σy ⊗ τx,σz ⊗ τx.

Similarly, for HM at M point,

T M
1 = σx ⊗ iτyK, T M

2 = iσyK ⊗ τx, (16)

and

T M
1 − even : HM,σx ⊗ τ0,σy ⊗ τ0,σz ⊗ τx,σz ⊗ τy,

T M
2 − even : HM,σy ⊗ τz,σx ⊗ τz,σ0 ⊗ τx,σ0 ⊗ τy.

The identification of the antiunitary T symmetries that protect
the band degeneracies in Fe-based superconductors is one of
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the main results of this work. The finding allows us to char-
acterize the form of electronic order induced by the possible
effective interactions with respect to their ability to lift the band
degeneracy at � and M points. The experimental observation
of the momentum space anisotropy, temperature dependence,
and domain features associated with the degeneracy lifting can
then be used to determine the important microscopic electronic
interactions responsible for nematicity in FeSe.

B. Degeneracy-lifting interactions

On physical grounds, two degenerate states ψ1 and ψ2 can
be split by either level shift or quantum mixing (hybridization).
Using the spinor notation, ψ = (ψ1,ψ2)T , we can express
the two types of interactions as gzψ

†σzψ and gxψ
†σxψ ,

respectively. The outcome of the σz interaction dependents
on the sign of gz, which determines the relative position of ψ1

and ψ2 upon splitting and hence corresponds to two possible
domains. On the other hand, the σx interaction, being off
diagonal, leads to a hybridized spectrum symmetric in ψ1

and ψ2 independent of the sign of gx , and hence produces
no domain effect. Since ARPES experiments observed two-
domain contributions for the splitting at M below Ts and a
splitting with a single domain at �/Z above Ts , they must
originate from two distinct type of interactions, i.e., �M due
to orbital shifting and ��/Z due to quantum mixing of the
orbitals.

It is therefore possible to write down all the possible forms
of the electronic order or effective interactions between the
degenerate orbital states at � and M . Since the experimental
observations are generally consistent with a unit cell contain-
ing two-Fe atoms, we will focus on the interactions that do
not break the lattice translation symmetry. We find six types of
relevant interactions or electronic orders among the dxz and dyz

orbitals in the eigenbasis of the glide symmetry in Eq. (8). They
are listed in the first column of Table I with the corresponding
coupling constants g1, . . . ,g6. The coupling constants g4,5,6

are in general complex and are thus decomposed into real and

imaginary parts by writing gm± = g′
m± + ig′′

m±, m = 4,5,6.
In the second column of Table I, the spatial representations
that produce the corresponding interactions at the � and M

points are given. In cases where the interaction is nonlocal,
we consider the nearest neighbors of site i indicated by
i + δx,y along the x and y directions and the lowest angular
momentum representations. The physical meaning of the
electronic interaction/order is given in the third column and
whether it can lift the band degeneracy at � and M points is
noted in the last two columns of Table I.

In Table II, the matrix structures of the interactions are
given explicitly in terms of the product of Pauli matrices in
the orbital and sublattice subspaces. They span the complete
set of the 15 generators. The columns in Table II show the
properties of the corresponding interaction under the point
group and glide symmetry operations given in Eqs. (11)
and (12). Note that although these symmetry operators can
have different forms at � and M in the latter equations due to
the presence of the reciprocal lattice vector, the symmetry
and symmetry-breaking patterns of the interactions gi are
the same at � and M , which is consistent with the fact
that the space group operations are global. However, it is
important to realize that these symmetry operations can have
different commutation relations at � and M , thus resulting
in different group properties such as whether there exists a
two-dimensional irreducible representation. Since the band
degeneracy is protected by the newly identified antiunitary T

symmetry, it is straightforward to determine if the interaction
can lift the degeneracy by breaking the T �

1,2 and T M
1,2 at � and M

points separately. In the case where the degeneracy remains,
the protecting T symmetry is displayed in the parenthesis.

1. g1,2,3 interactions

Interactions g1,2,3 produce orbital shifts as can be seen from
Table I and break both S4 and �d symmetries, while preserving
Gs as shown in Table II. They are thus nematic interactions.
Furthermore, since they break all the T symmetries, the

TABLE I. The six types of effective interactions in the eigenbasis of glide symmetry (first column), their real-space representations (second
column), physical meanings (third column), and whether they generate degeneracy splitting at � and M (fourth and fifth column).

Interactions at �/M Real Space Order �� �M

g1[(d†
xz,edxz,e + d†

xz,odxz,o) − (yz)] g1(d†
xz,idxz,i − d

†
yz,idyz,i) Ferro-orbital ∅ ∅

g2[(d†
xz,edxz,e − d†

xz,odxz,o) − (yz)] g2(d†
xz,idxz,i+δ − d

†
yz,idyz,i+δ) s-wave bond nematic ∅ 0

g3[(d†
xz,edxz,e − d†

xz,odxz,o) + (yz)] g3(−1)δy (d†
xz,idxz,i+δ + d

†
yz,idyz,i+δ) d-wave bond nematic 0 ∅

g′
4+(d†

xz,edyz,e + d†
xz,odyz,o) + H.c. g′

4+d
†
xz,idyz,i + H.c. Orbital polarization ∅ 0

ig′′
4+(d†

xz,edyz,e + d†
xz,odyz,o) + H.c. ig′′

4+d
†
xz,idyz,i + H.c. Ferro Lz/Spin orbit coupling ∅ 0

g′
4−(d†

xz,edyz,e − d†
xz,odyz,o) + H.c. g′

4−(d†
xz,idyz,i+δ + d

†
yz,idxz,i+δ) + H.c. interorbital hopping ∅ 0

ig′′
4−(d†

xz,edyz,e − d†
xz,odyz,o) + H.c. ig′′

4−(d†
xz,idyz,i+δ − d

†
yz,idxz,i+δ) + H.c. Orbital current/Spin orbital flux ∅ 0

g′
5+(d†

xz,edxz,o + d†
yz,edyz,o) + H.c. g′

5+eiQri (d†
xz,idxz,i + d

†
yz,idyz,i) Charge/spin density wave 0 0

ig′′
5+(d†

xz,edxz,o + d†
yz,edyz,o) + H.c. ig′′

5+(d†
xz,idxz,i+δ + d

†
yz,idyz,i+δ) + H.c. circulating current (flux) 0 0

g′
5−(d†

xz,edxz,o − d†
yz,edyz,o) + H.c. g′

5−eiQri (d†
xz,idxz,i − d

†
yz,idyz,i) AF orbital 0 0

ig′′
5−(d†

xz,edxz,o − d†
yz,edyz,o) + H.c. ig′′

5−(d†
xz,idxz,i+δ − d

†
yz,idyz,i+δ) + H.c. Ferro-orbital current 0 0

g′
6+(d†

xz,edyz,o + d†
xz,odyz,e) + H.c. g′

6+eiQri d
†
xz,idyz,i + H.c. AF orbital polarization 0 ∅

ig′′
6+(d†

xz,edyz,o + d†
xz,odyz,e) + H.c. ig′′

6+eiQri d
†
xz,idyz,i + H.c. AF Lz/ AF spin orbit coupling 0 ∅

g′
6−(d†

xz,edyz,o − d†
xz,odyz,e) + H.c. g′

6−(−1)δy (d†
xz,idyz,i+δ − d

†
yz,idxz,i+δ) + H.c. d-wave interorbital hopping 0 ∅

ig′′
6−(d†

xz,edyz,o − d†
xz,odyz,e) + H.c. ig′′

6−(−1)δy (d†
xz,idyz,i+δ + d

†
yz,idxz,i+δ) + H.c. d-wave orbital current 0 ∅
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TABLE II. Symmetry properties of the effective interactions in the direct product space of orbital and sublattice. The laster two rows
indicate whether the band degeneracy at � and M is lifted (∅) or not (0). In the latter case, the corresponding protecting antiunitary T symmetry
is given in the parenthesis, or a ∗ is given to indicate that the interaction is identically zero at the corresponding high-symmetry point.

g1 g2 g3 g′
4+ g′′

4+ g′
4− g′′

4− g′
5+ g′′

5+ g′
5− g′′

5− g′
6+ g′′

6+ g′
6− g′′

6−
σzτ0 σzτz σ0τz σxτ0 σyτ0 σxτz σyτz σ0τx σ0τy σzτx σzτy σxτx σyτx σyτy σxτy

S4 × × × × √ × √ √ √ × × × √ √ ×
�d × × × √ × √ × √ √ × × √ × × √
Gs

√ √ √ √ √ √ √ × × × × × × × ×
Gs · S4 × × × × √ × √ × × √ √ √ × × √
Gs · �d × × × √ × √ × × × √ √ × √ √ ×
�� ∅ ∅ 0(∗) ∅ ∅ ∅ ∅ 0(T �

1 ) 0(T �
2 ) 0(T �

2 ) 0(T �
1 ) 0(T �

2 ) 0(T �
2 ) 0(T �

1 ) 0(T �
1 )

�M ∅ 0(∗) ∅ 0(T M
1 ) 0(T M

1 ) 0(T M
2 ) 0(T M

2 ) 0(T M
2 ) 0(T M

2 ) 0(T M
1 ) 0(T M

1 ) ∅ ∅ ∅ ∅

degeneracies at � and M are not protected and the lifting
of the degeneracy must come with domain effects. Thus g1,2,3

are only suitable candidates for describing the observations at
M points where two domains are observed by ARPES at low
temperatures.

(i) The real-space expression of g1 is given in Table I,

OFO = g1

∑
iσ

(d†
xz,iσ dxz,iσ − d

†
yz,iσ dyz,iσ ), (17)

which coincides with the commonly discussed ferro-orbital
order (FO) parameter. It is isotropic in momentum space and
leads to �� = �M 	= 0 simultaneously by breaking all the
T symmetry, and is thus incompatible with the experimental
findings in FeSe.

(ii) As shown in Table I, g2 is a bond operator between the
nearest neighbors. In momentum space,

OsNB = g2

∑
kσ

γk(d†
xz,kσ dxz,kσ − d

†
yz,kσ dyz,kσ ), (18)

where γk = cos kx + cos ky . This is clearly an extended s-wave
nematic bond order parameter that breaks both S4 and �d

symmetry. The s-wave form factor (γk) vanishes at M point,
which makes it possible for a nonzero expectation of OsNB to
generate a �� 	= 0 but �M = 0. Although this splitting patten
is consistent with ARPES at T > Ts , OsNB cannot describe
the high temperature isotropic phase since it would break
the fourfold rotation symmetry of the Fermi surface at �

with accompanying domain effects; both were not observed
experimentally.

(iii) In momentum space, the bond interaction g3 in Table I
reads

OdNB = g3

∑
kσ

βk(d†
xz,k,σ dxz,kσ + d

†
yz,kσ dyz,kσ ), (19)

where βk = cos kx − cos ky . This corresponds precisely to
the d-wave nematic bond interaction that describes the low-
temperature nematic state. 〈OdNB〉 	= 0 leads to �M 	= 0,
but �� = 0 since its form factor βk vanishes at the zone
center. Note that OdNB drives an in-phase d-wave bond order
between the dxz and dyz orbital, which should be contrasted to
the out-of-phase symmetry-preserving d-wave bond between
these orbitals already present in the hopping terms of the TB
model [35]. In the next section, we will show how OdNB can
generated by the intersite Coulomb interaction, resulting in a

d-wave nematic state consistent with experimental observa-
tions at low temperatures.

2. g4,5,6 interactions

The remaining three types of interactions, g4,5,6 in Table I,
generate quantum mixing/hybrdization among the degenerate
orbitals. Thus any resulting degeneracy splitting would have
only a single domain. Table II shows that although there
are four interactions in each type with different space group
symmetry properties, the degeneracy-lifting pattern is the same
within each type.

(i) Interactions of the g4 type break either S4 or �d symme-
try, while keeping the glide symmetry Gs as seen in Table II.
Thus it is still possible for the remaining group to contain at
least one two-dimensional irreducible representation. Indeed,
one of the antiunitary symmetry in T M

1,2 remains and protects
the band degeneracy at M , whereas all T symmetry is broken
at � where the band degeneracy will be lifted as indicated in
Table II. From Table I, the spin SU(2) invariant representation
of g′

4+ describes the orbital polarization due to an effective
on-site crystal field correction,

OOP = g′
4+

∑
iσ

(d†
xz,iσ dyz,iσ + H.c.). (20)

Similarly, that of g′
4− generates an interorbital hopping or an

extended s-wave orbital polarization,

OsOP = g′
4−

∑
kσ

γk(d†
xz,kσ dyz,kσ + H.c.). (21)

Although both OOP and OsOP split the degeneracy at �, the
fact that they both break S4 and Gs · S4 symmetries makes
them incompatible with the experimental observation where
the splitting at � in the high-temperature phase maintains the
fourfold rotation symmetry.

Surprisingly, the imaginary components g′′
4± preserves S4

symmetry despite of �� 	= 0, which offers an intriguing, and
the only possible account of the observed properties in the
high temperature isotropic phase: degeneracy splitting only
at � point, coexisting fourfold symmetric Fermi surfaces,
and the absence of domain effects. The spin SU(2) invariant
representation of g′′

4+ is

OLz
= ig′′

4+
∑
iσ

(d†
xz,iσ dyz,iσ − d

†
yz,iσ dxz,iσ ), (22)
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which corresponds to an orbital angular momentum Lz

order that breaks the time-reversal symmetry. Remarkably,
there exists a time-reversal invariant but spin-SU(2) breaking
representation

Osoc = ig′′
4+

∑
iσ

σ (d†
xz,iσ dyz,iσ − d

†
yz,iσ dxz,iσ ), (23)

which has an identical form as the spin-orbit interaction in
the dxz/yz sector. Such an interaction can come from either
the intrinsic SOC or be generated effectively [20]. Since the
experimentally observed ��/Z degeneracy splitting is nearly
T -independent up to the highest measured temperature of
150 K [14,15], we conclude that the latter originates from the
intrinsic atomic SOC and estimate the strength of the SOC to be
on the order of 30 meV. Noted that since the SOC involving
all d orbitals breaks the glide symmetry, the corresponding
band crossings should be lifted except at M and A point in the
BZ [29,36]. We note that although not all such splittings have
been detected at the present time, the hybridization between
the dxy and dxz/yz orbitals near �/Z has indeed been observed
by ARPES experiments [14,15].

The analysis of the interaction g′′
4− in Table I can be made

in the same spirit. The spin SU(2) invariant realization of this
bond operator corresponds to interorbital circulating current
order (or the orbital flux phase) that breaks time-reversal
symmetry. Similar to Osoc in Eq. (23), there is a time reversal
invariant realization that corresponds to spin-dependent orbital
current order, where electrons with opposite spin-component
traverse the lattice and accumulate opposite signs of the flux.

(iii) Interactions of the type g5 and g6 are hybridizations
between the even and odd orbitals and thus break the glide
symmetry Gs . The g5 interactions are diagonal in the orbitals.
The real parts represent charge density wave or spin density
wave order (g′

5+) at wave vector Q and antiferro (AF) orbital
density wave order (g′

5−), while the imaginary parts are
realizations of the orbital current (or flux) order (g′′

5+) and
a hybrid of ferro-orbital and orbital current order (g′′

5−), as
shown in Table I. Note that all individual interactions of the
g5 type leave one of the T -symmetry intact at � and M points
as seen in Table II, and thus do not lift the degeneracy at �

and M . However, it is interesting to note that the coexistence
of pairs of interactions, e.g., g′

5± or g′′
5±, would remove all

the T symmetry protections and lead to simultaneous nonzero
degeneracy splitting energies at � and M .

(iv) The interactions of the g6 type have the same orbital
content as those of the g4, but scatter between the even
and odd components in the sublattice space. As shown in
Table I, they generate AF orbital polarization (g′

6+), AF spin
orbital coupling or AF orbital angular momentum Lz (g′′

6+),
interorbital hopping in the d-wave channel (g′

6−), and d-wave
orbital current or flux (g′′

6−). The degeneracy at � is protected
by one of the remaining T symmetry T �

1,2, while it is lifted at
M since all g6 interactions are odd under T M

1,2. It is important
to note that although �� = 0 and �M 	= 0, g6 cannot account
for the experimental observations at low temperatures since
S4 or Gs · S4 remains a symmetry, which implies that the
Fermi surfaces maintain fourfold symmetry without nematic
distortions.

Based on the systematic symmetry analysis in this section,
we conclude that the distinct degeneracy lifting observed
by ARPES experiments at � and M originate from two
independent interactions: the spin-orbit interaction in Eq. (23)
responsible for �� 	= 0 already at high temperatures above
Ts and the d-wave bond nematic interaction in Eq. (19) that
produces the low-temperature nematic phase with �M 	= 0.

III. INTERSITE INTERACTION AND d-WAVE NEMATIC
BOND ORDER

In the rest of the paper, we focus on how interatomic V

leads to strong band renormalization in FeSe and induces an
emergent nematic order 〈OdNB〉 	= 0 in the ground state. To
this end, we study the extended Hubbard model

H = Ht + HU + HV , (24)

where Ht is the tight-binding (TB) model given in Eq. (1) and
studied in the previous section. The intra-atomic interactions
HU are given by the standard multiorbital Hubbard model

HU = U
∑
i,α

niα↑niα↓ +
(

U ′ − 1

2
J

) ∑
i,α<β

niαniβ

− J
∑
i,α 	=β

Siα · Siβ + J
∑
i,α 	=β

d
†
iα↑d

†
iα↓diβ↓diβ↑, (25)

where U and U ′ are the on-site, intra- and interorbital on-site
Coulomb repulsions and J is the Hund’s rule exchange cou-
pling with U = U ′ + 2J . Note that when the Hamiltonian (25)
is used to describe the complete set of d orbitals, J should be
understood as an average of the exchange interactions of the
t2g and the eg orbitals since the effects caused by the difference
in the latter are usually small in a cubic system [37,38]. The
extended interatomic Coulomb interaction is given by

HV = V
∑
〈i,j〉

: ninj : , (26)

where the “normal-order” sign indicates that the direct Hartree
term depending on the total density ni = ∑

α niα is subtracted,
since that part of the interaction has been already included
in the LDA. The same is true when treating HU in the
HF theory [25,26]. Thus our treatment of interactions is in
the same spirit as the LDA+U + V approach [39,40]. The
importance of the extended Coulomb interaction in Fe-based
superconductors has been emphasized previously [30] with
a focus on the properties associated with such p-d charge
transfer metals. In the downfolded Fe-only model studied
here, the interatomic interaction in Eq. (26) is between the
nearest-neighbor Fe atoms.

A. Quantum fluctuations due to intersite V

It is well known that the Fe-pinictide band structure is
prone to a collinear SDW order that is also present in the
multiorbital Hubbard model [26,41]. Writing 〈c†iασ ciβσ ′ 〉 =
1
2 [nα + σmα cos (QAF · ri)]δαβδσσ ′ , where QAF = (π,0) and
nα and mα are the density and spin density in orbital α,
a nonzero mα is most easily obtained in the weak-coupling
Hartree-Fock theory [41], which is reliable when U is small.
Since the electron correlation strength is comparable to the

115138-7



KUN JIANG, JIANGPING HU, HONG DING, AND ZIQIANG WANG PHYSICAL REVIEW B 93, 115138 (2016)

bandwidth of the d-electron complex, a complete description
of the collinear SDW metal phase with realistic parameters
would require a strong coupling approach that takes into
account the correlation effects nonperturbatively [26]. Here,
we will carry out the Hartree-Fock theory for the extended
Hubbard model in Eq. (24) using as effective parameters
U = 1.4 eV and J = 0.2 eV. We will show that the quantum
fluctuations induced by the intersite V lead to a renormalized
band structure where the Fermi level sits close to the
vHS, which allows a weak-coupling approach to capture
the leading instability, the suppression of collinear SDW,
and the emergence of the d-wave nematic bond order. The
Hubbard interaction HU in Eq. (25) is decoupled in terms
of the self-consistent internal fields in the charge and spin
sectors [26]: �α = 1

2 (2U − 5J )n − 1
2 (U − 5J )nα and hα =

1
2Jm + 1

2 (U − J )mα , where (n,m) = ∑
α(nα,mα). The self-

consistently determined ground state indeed has QAF-SDW
order in the absence of the intersite interaction V . To treat
the quantum fluctuations beyond LDA, we decouple HV in
Eq. (26) in the hopping/bond channel,

HV = −V
∑

〈i,j〉,αβ

(
χ

αβ

ij d
†
iαdjβ + H.c. − ∣∣χαβ

ij

∣∣2)
, (27)

where χ
αβ

ij = 〈d†
jβdiα〉 and the spin index is suppressed

for simplicity unless otherwise noted. In the presence of
translation symmetry, the real nearest-neighbor valence bond

between any pair of orbitals (α,β) can be decomposed into the
lattice harmonics of different angular momentum in k space:

χij =
∑

k

(
2χsγk + 2χpxη

x
k + 2χpyη

y

k + 2χdβk

)
, (28)

where γk and βk are the extended s-wave and d-wave form
factors and η

x(y)
k = i sin kx(y) are the p-wave form factors.

Comparing Eqs. (27) and (28) to the tight-binding model in
Eq. (1), it is clear that such quantum fluctuations amount to
renormalizing the hopping integral

tαβ

ij = t
αβ

ij − V χ
αβ

ij (29)

between the nearest neighbors. There are in fact two classes of
contributions generated by the intersite interaction analogous
to the situation in a general renormalization group analysis:
(i) the corrections to the existing hopping parameters that
maintain the lattice symmetry and thus lead to the renor-
malization of the band structure and (ii) the spontaneous
generation of new and symmetry breaking hopping channels.
Correspondingly, we can write

HV = H b.r.
V + H s.b.

V .

Since the full expressions for H b.r.
V and H s.b.

V are rather lengthy,
we shall display explicitly the terms involving only the t2g

orbitals:

H b.r.
V = − V

∑
k

2
[
χsγk(d†

xz,kdxz,k + d
†
yz,kdyz,k) + χdβk(d†

xz,kdxz,k − d
†
yz,kdyz,k) + χ14

pxη
x
k d

†
xz,kdxy,k

+ χ24
pyη

y

k d
†
yz,kdxy,k + χ44

s γkd
†
xy,kdxy,k + H.c. + (terms involving eg orbitals)

]
, (30)

where χs = (χ11
s + χ22

s )/2 and χd = (χ11
d − χ22

d )/2. The symmetry-breaking part is

H s.b.
V = − V0

∑
k

2
[
�sγk(d†

xz,kdxz,k − d
†
yz,kdyz,k) + �dβk(d†

xz,kdxz,k + d
†
yz,kdyz,k)

+ (
χ11/22

px ηx
k + χ11/22

py η
y

k

)
d
†
xz/yz,kdxz/yz,k + (

χ12
s γk + χ12

d βk + χ12
pxη

x
k + χ12

pyη
y

k

)
d
†
xz,kdyz,k

+ (
χ14/24

s γk + χ
14/24
d βk

)
d
†
xz/yz,kdxy,k + χ14

pyη
y

k d
†
xz,kdxy,k + χ24

pxη
x
k d

†
yz,kdxy,k

+ (
χ44

pxη
x
k + χ44

pyη
y

k

)
d
†
xy,kdxy,k + χ44

d βkd
†
xy,kdxy,k + H.c. + (terms involving eg orbitals)

]
, (31)

where �s = (χ11
s − χ22

s )/2 and �d = (χ11
d + χ22

d )/2. The
second term in Eq. (31) is precisely the d-wave nematic inter-
action in Eq. (19) and the last term χ44

d is its counterpart in the
dxy channel. Note that we have denoted the interaction strength
differently as V and V0 in Eqs. (30) and (31). Although the bare
values stemming from the microscopic Coulomb interaction
are expected to the same, the effective interaction strengths
V0 	= V due to the effects of orbital polarization, screening,
and other orbital dependent contributions. To develop more
physical insights, we will vary V and V0 independently around
V0/V = 1 in the calculations.

1. Renormalization of the band structure in bulk FeSe

We first discuss how V renormalizes the band structure
by switching off H s.b.

V (i.e., setting V0 = 0). The evolution of

the self-consistently determined low-energy band dispersions
are shown in Fig. 3. With increasing V , the value of EvH �
350 meV in the TB model at V = 0 shown in Fig. 3(a) is
renormalized close to the experimental value of 25 meV at
V = 0.73 eV in Fig. 3(b), and then to coincide with the
Fermi level EF at V = 0.763 eV shown in Fig. 3(c). With
increasing V , notice that the Dirac crossings of the dxy and
dyz/xz bands also move up toward the Fermi level. Eventually,
the vHS is pushed above the Fermi level which now cuts
through the Dirac nodes, while the hole bands sink below EF

at V = 0.85 eV as shown in Fig. 3(d), realizing an interesting
state of a Dirac semimetal. Correspondingly, Figs. 3(e)–3(h)
show the remarkable evolution of the fourfold symmetric
Fermi surfaces: from the very large LDA hole and electron
pockets in Fig. 3(e) to the observed small elliptical electron
pockets with prominent quasi-1D character in Fig. 3(f), and

115138-8



INTERATOMIC COULOMB INTERACTION AND ELECTRON . . . PHYSICAL REVIEW B 93, 115138 (2016)

FIG. 3. Renormalized band structure (a)–(d) in unit of eV and corresponding FS (e)–(h) at V = 0 (a), 0.73 eV (b), 0.763 eV (c), and
0.85 eV (d). Red dots indicate vHS at dxz/yz degeneracy point at M . FSs in (e) are 87.5% of their actual sizes.

then to four flower pedals at EvH = 0 in Fig. 3(g), and finally
to four Dirac points in Fig. 3(h).

Thus the immediate consequence of the strong band
renormalization in bulk FeSe is the dynamically generated
proximity of the vHS to EF in the electron liquid phase. It
is remarkable that for the range of V values where the vHS
is within 25 meV of EF in the renormalized band structure,
the self-consistent solution of the ground state is always an
electron liquid state that is stable against collinear SDW and
charge density wave order. In Fig. 4(a), the 2D density of
states (DOS) of the renormalized band at EvH = 0 is plotted,
showing its logarithmic divergence at EF . Correspondingly,
the calculated two-particle static susceptibility χ0(q) shown in
Fig. 4(b) displays a sharp peak at q = 0 due to the vHS, which
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FIG. 4. DOS (a) and static susceptibility (b) of V -renormalized
band structure at EvH = 0 and corresponding degeneracy-splitting
energy �M (c). Black lines in (a)–(c) for TB fit t14

x = 305 meV
and blue line for t14

x = 100 meV. (d) �M vs V around vHS
for t14

x = 100 meV; curves from bottom to top are for V0/V =
0.6,0.8,0.9,1.0,1.1, and 1.2. The dashed black vertical line in (d)
indicates where the vHS coincides with the Fermi level.

appears even stronger than the peak at (π,0) which dominated
the DOS in the absence of V . Thus the electron liquid state
is only unstable toward a q = 0 nematic instability, analogous
to the nematicity due to the vHS proposed for bilayer Sr-
ruthenates [42]. Interestingly, we find that the vHS strengthens
considerably when the hopping integral between the dxz/yz and
dxy orbitals, described by the term −2it14

x sin(kx/y)d+
xz/yzdxy

in the TB model, is decreased. The TB fit to LDA bands
gives t14

x = 305 meV. Reducing t14
x by a factor of 3 leads

to a significantly flatter dxy band near �/Z as observed in
the ARPES experiments [14] and to reduced curvatures of
the dxz/yz band at the vHS point. Figures 4(a)–4(b) show
that the corresponding DOS and the q = 0 susceptibility are
significantly enhanced, suggesting a much stronger nematic
instability of the Pomeranchuk-type.

2. d-wave bond nematic order

We next show that the q = 0 instability corresponds to
the d-wave nematic bond order. To this end, we first set
V = 0.763 eV where EvH = 0 [Fig. 3(c)] and switch on V0

in the symmetry breaking part of the Hamiltonian H s.b.
V in

Eq. (31). The self-consistent solutions show that among all
the symmetry breaking terms, the leading instability occurs
precisely in the d-wave nematic bond channel with nonzero
�d and χ44

d in Eq. (31), which emerge together and have the
largest form factor at M point. The degeneracy splitting energy
�M between the dxz and dyz orbitals is calculated directly
from the self-consistently determined eigenstate energies at
M-point and plotted in Fig. 4(c) as a function of V0. It serves
as a quantitative measure of the degree of nematicity in the
ground state.

To explore the range of V over which the nematicity is
controlled by the proximity of the vHS to EF , we plot in
Fig. 4(d) the �M map as a function of V for different ratios of
V0/V . The distance of the vHS to EF , i.e., EvH, varies with
V , and the dashed vertical line marks the location where the
vHS sits at EF , i.e., where EvH = 0. The most notable feature
of Fig. 4(d) is the existence of plateaux nearly symmetrically
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FIG. 5. Band dispersion in units of eV (left panel) and FS (right
panel) in a d-wave nematic state. (a) and (b) V = 0.763 eV, EvH = 0,
and V0 = 1.3 eV. (c) and (d) V = 0.73 eV, EvH = 25 meV, and
V0 = 1.34 eV. (e) and (f) V = 0.75 eV and V0 = 1.325 eV at 1%
electron doping. (g) and (h) With SOC λsoc = 28 meV, V = 0.763 eV,
V0 = 1.32 eV at 1% electron doping.

distributed around EvH = 0 that grows in width and height
with increasing V0/V . For V0/V ∼ 1, the latter covers the
experimentally observed EvH � 25 meV. Parallel results are
obtained for t14

x = 305 meV where a similar �M requires a
larger V0/V .

In Fig. 5, we plot the band dispersion and the FS calculated
self-consistently in the d-wave bond nematic ground state
in a single-domain. In Figs. 5(a) and 5(b), the renormalized
EF of the electron liquid is at the vHS, i.e., EvH = 0. The
d-wave nematic order removes the vHS by splitting the band-
degeneracy around the Fermi level and produces the fourfold
symmetry breaking FS pockets as a result of the d-wave
Pomeranchuk distortion. In Figs. 5(c) and 5(d), EvH = 25 meV
in the electron liquid phase, which corresponds to the observed
value for the nominally undoped FeSe. Figures 5(e) and 5(f) are
obtained for 1% electron doped Fe1.01Se which may be closer
to the as-grown samples used experimentally [9,10,14]. In the
latter two cases, we find good agreements with the measured
dispersions for a single domain shown in Fig. 1(d) near the M

point as well as the shape of the FS pockets [13–15].
It is important to point out that the d-wave nematic bond

order and the ferro-orbital order are not orthogonal and
mutually exclusive. They belong to the same space group
as it is clear from Table II that the interactions g1,2,3 have

the same symmetry breaking pattern. As a result, both �d =∑
k βk[nxz(k) + nyz(k)] and �FO = ∑

k[nxz(k) − nyz(k)] are
none zero in the d-wave bond nematic state, deriving from
a momentum distribution function nα(k) that breaks the S4

symmetry, unless additional particle-hole symmetry is present
which is not the case in FeSe. The conventional Pomeranchuk
FS distortion is thus generalized to the case with orbital-lattice
momentum coupling. This explains why local probes such
as NMR have detected FO order in the low-temperature
nematic phase [16,17]. We stress that, in the present theory,
the nematic transition is driven by the d-wave bond order
that couples to the intersite Coulomb interaction and the FO
order is induced parasitically, since the energy lowering in
going from the electron liquid to the nematic state primarily
comes from the d-wave nematic bond order. Indeed, since
the FO order parameter �FO only couples directly to the
local intra-atomic interactions but not to V , the degeneracy
splitting energy �M = 8V0�d − 1

2 (U − 5J )�FO in the HF
theory is dominated by the contribution from �d , and even
more so due to the large Hund’s rule coupling J in Fe-base
superconductors [26,43] making U − 5J much smaller. This
explains the insensitivity of degeneracy splitting energy ��

at the zone center to the d-wave nematic bond order at low
temperatures, which is estimated to have only about 5 meV
variations from 120 K down to 22 K in the ARPES data [14],
as shown in Fig. 1(d). Nevertheless, the induced �FO does lead
to the distortion of the hole FS near the zone center. For the
values of U and J studied here, the hole FS pockets shown
in Figs 5(d), 5(f), and 5(h) near the � point indeed break the
fourfold rotational symmetry in a manner consistent with the
experimental observations [15].

In Figs. 5(g) and 5(h), we show the results obtained when
an atomic SOC term involving the entire 3d complex, Hsoc =∑

iαβσσ ′ λsoc〈α|L|β〉〈σ |S|σ ′〉d+
iασ diβσ ′ , is added to the Hamil-

tonian with λsoc � 28 meV. As predicted by the symmetry
analysis in the last section, the SOC splits the band degeneracy
at � without affecting the bands at M . Moreover, it pushes one
of the two hole bands at � below EF , leaving a single twofold
symmetric hole pocket consistent with what was observed in
ARPES and quantum oscillation experiments [13,15]. It is
important to note that since the glide symmetry is broken by
the SOC, the Dirac crossings located below the Fermi level
between the dxy and dyz orbitals in a single domain are lifted
by the SOC, as shown in Fig. 5(g). This small gapping of the
Dirac points can serve as a landmark for the presence of a
sizable SOC in FeSe, although the detection of the dxy band
by ARPES below the Fermi level has been notoriously difficult
in bulk FeSe. In contrast, we expect that Dirac like crossings
formed by the dxy and dyz bands originating from different
domains will not be gapped.

Finally, for all the cases studied with EvH within 25 meV
of the Fermi level, the d-wave nematic order dominates
and the collinear SDW order is absent in the self-consistent
solutions of the ground state. It is thus highly conceivable that
magnetism and d-wave nematicity are competing caricatures
in FeSe superconductors. In the present theory, the strong band
renormalization, the suppression of the collinear magnetic
order, and the emergence of the electronic nematic order
have the common origin which is the intersite Coulomb
interaction.
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IV. SUMMARY AND DISCUSSIONS

We have shown that the rise and the demise of symmetry
protected degeneracies in the electronic band structure can be
used to probe the novel quantum states and the underlying
interactions in correlated multiorbital electron materials. This
work makes two advances in this direction with specific
emphasis on Fe-based superconductors. First, a systematic
symmetry analysis revealed the “hidden” antiunitary T sym-
metries that protect the degeneracies at high-symmetry points
in the BZ, and their connection to point-group and glide
symmetry operations. This enabled the identification of the
relevant electronic order/interaction that can break the T

symmetry and lift the band degeneracy. These results are
applicable to all Fe-based superconductors. For bulk FeSe, the
above analysis combined with recent experimental observation
of the splitting of the band degeneracy, including their
momentum space anisotropy, temperature dependence, and
domain effects lead uniquely to the conclusion that the splitting
present already in the high temperature electron liquid phase
at � is due to the atomic SOC, while the splitting at M is due
to the d-wave nematic bond order that emerges only in the low
temperature nematic phase.

A microscopic theory is then developed to show that the
unusually large band structure and FS renormalization, the
absence of magnetism, and the emergence of the d-wave
nematic order in FeSe can be explained by the important Fe-Fe
interatomic Coulomb repulsion V . In addition to offering a nat-
ural description of the ARPES and quantum oscillation exper-
iments, the theory suggests that the electronic nematicity is the
driving force behind the tetragonal to orthorhombic structural
transition. Interestingly, recent neutron scattering experiments
in FeSe observed the spin fluctuations around (π,0) below the
structural transition and the magnetic resonance at (π,0) below
the superconducting transition [44,45], which can be explained
by the presence of a nematic electronic structure [46]. We
also note that interatomic Coulomb interactions favor s-wave
pairing [30] and that the same V term has been argued
recently to play an important role in stabilizing the s-wave
pairing symmetry in Fe-based superconductors [47]. The
overarching importance of the extended Coulomb interaction
V may originate from the lack of the charge reservoir layers
and the shorter Fe-Fe bond in bulk FeSe when compared
to Fe-pnictides [23]. Interestingly, electronic nematicity with
similar phenomenology has been observed recently in 35-
monolayer FeSe films with a larger �M = 80 meV and
higher Tnem = 125 K [48,49], suggesting that further reduced
screening of extended Coulomb interaction in films can result
in a stronger V and an enhanced nematic response.

An important, falsifiable prediction of the present theory
is the correlation between the emergence of the degeneracy-
lifting nematic state and the dynamical, intersite Coulomb
interaction V -induced proximity of the vHS to the Fermi
level. It is thus desirable to seek direct experimental evidence
for extended Coulomb interaction and further experimental
tests by other techniques such as scanning probe and x-ray
spectroscopy for the presence of the vHS near EF above
and its removal below the nematic/structural transition. This
state of affairs is summarized in Fig. 6 where �M is plotted
versus the distance of the vHS to the Fermi level EvH at

FIG. 6. (a) Schematics of the electronic structure near M showing
the location of the vHS (EvH) before (a) and the degeneracy splitting
energy �M after (b) the nematic transition. (c) �M as a function of
EvH at fixed V0/V = 1.8,1.7,1.6,1.4 from the top line to the bottom
line.

different values of V0. It is in principle possible to tune
the vHS by doping, pressure, or chemical substitution and
study the corresponding changes in the nematic response
such as the transition temperature and the band degeneracy
splitting energy �M . While more experimental tests are clearly
necessary, recent studies of chemically substituted bulk FeSe
by S indeed find that �M increases with decreasing EvH [50],
qualitatively consistent with the prediction shown in Fig. 6(c).

More importantly, since electron doping FeSe moves the
Fermi level upward and away from the vHS at M point
[see Fig. 6(a)], the present theory predicts that the nematic
order will disappear while the vHS and band degeneracies
survive at low temperatures when the material is subject to
sufficient electron doping. Remarkably, this has been observed
recently by ARPES on bulk FeSe whose surface layer is
heavily electron-doped with Na [51]. The measurements
show that the nematic state is absent and the vHS and the
band degeneracy remain intact at 65 meV below the Fermi
level [51]. Surprisingly, a pairing gap near EF develops
at low temperatures that is consistent with the onset of a
superconducting transition at Tc = 20 K, much higher than the
9 K transition in undoped FeSe, suggesting that the nematic
state in bulk FeSe is a form of competing order of the
superconducting state. Furthermore, in 50-monolayer FeSe
films, a continuous reduction of the nematic order induced
degeneracy splitting �M by surface electron doping with K has
been observed, as well as an increase in the superconducting
Tc when nematicity is suppressed [52].

There is indeed an empirical correlation that the higher
the electronic nematic transition temperature, the higher the
optimal superconducting Tc when electron doping removes the
nematicity. Recent reports on 30-monolayer FeSe films, which
are similar to the 35-monolayer films mentioned earlier with
a nematic transition temperature around 125 K [48,49], shows
a superconducting Tc as high as 44 K [52] under K surface
doping. The strongest nematic phase with Tnem � 180 K is
in fact an insulator observed in the nonsuperconducting N
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phase of single and double-layer FeSe films grown on SrTiO3

substrates [53,54]. Thermal annealing introduces significant
electron doping that removes the nematic insulating state in
favor of the superconducting S phase with the highest Tc

as much as 65 K [53–55]. Our findings on the importance
of intersite Coulomb interaction, the correlation induced
proximity of the vHS near the Fermi level, and the new form
of nonlocal, bond nematic orbital order with momentum space
anisotropy provide considerable new microscopic insights into
the intimate, competing relationship between nematicity and
superconductivity, which may hold the key to understanding

the pairing mechanism and to making Tc even higher in these
materials.
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