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We briefly discuss reciprocal pairing form factors provided by antiferromagnetic exchange interactions. Considering
a magnetic exchange coupling between two electrons at two different sites, we have
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where σ̄ labels the opposite spin direction of σ. Given an antiferromagnetic exchange coupling Jij > 0, the decoupling
of the first two terms in Eq. 1 in pairing channel leads to triplet pairing and costs energy. The last term in Eq. 1 gives
singlet pair and saves energy. Defining ∆ij =< c+iσc

+
jσ̄ >, we obtain that the energy saved from magnetic exchange

coupling is given by

< Jij ~Si · ~Sj >= −1

2
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In a uniform superconducting state, ∆ij should be a function of ~ri − ~rj . Therefore, we can define ∆~k =
1
N

∑
<ij> e

i~k·(~ri−~rj)∆ij =< c+σ (~k)c+σ̄ (−~k) > , where N is the total number of < ij > links and c+σ (~k) is electron
creation operators in momentum space.

First, we consider cases in a tetragonal lattice and define ~x, ~y as the unit vectors of the lattice.

• s-wave pairing by NN AF in a tetragonal lattice:
∆ii±~x = ∆ii±~y = ∆0, ∆~k = ∆0

4 (eikx + e−ikx + eiky + e−iky ) = ∆0

2 (coskx + cosky).

• d-wave pairing by NN AF in a tetragonal lattice:
∆ii±~x = −∆ii±~y = ∆0 , ∆~k = ∆0

4 (eikx + e−ikx − eiky − e−iky ) = ∆0

2 (coskx − cosky).

• s-wave pairing by 2nd NN AF in a tetragonal lattice:
∆ii±(~x±~y) = ∆0, ∆~k = ∆0

4 (eikx+iky + e−ikx−iky + eikx−iky + eiky−ikx) = ∆0coskxcosky.

• d-wave pairing by 2nd NN AF in a tetragonal lattice:
∆ii±(~x+~y) = −∆ii±(~x−~y) = ∆0 , ∆~k = ∆0

4 (eikx+iky + e−ikx−iky − eikx−iky − eiky−ikx) = ∆0sinkxsinky.

• s-wave pairing by 3rd NN AF in a tetragonal lattice:
∆ii±2~x = ∆ii±2~y = ∆0, ∆~k = ∆0

4 (ei2kx + e−i2kx + ei2ky + e−i2ky ) = ∆0

2 (cos2kx + cos2ky).

• d-wave pairing by 3rd NN AF in a tetragonal lattice:
∆ii±2~x = −∆ii±2~y = ∆0 , ∆~k = ∆0

4 (ei2kx + e−i2kx − ei2ky − e−i2ky ) = ∆0

2 (cos2kx − cos2ky).

Second, we consider a standard triangle lattice with the two unit vectors ~e1 = (1, 0), ~e2 = ( 1
2 ,
√

3
2 ).

• s-wave pairing by NN AF in a triangle lattice:
∆ii±~e1 = ∆ii±~e2 = ∆ii±(~e1−~e2) = ∆0,

∆~k = ∆0
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• d±id-wave pairing by NN AF in a triangle lattice:
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Finally, we consider a honeycomb lattice where the two unit vectors are given by ~e1 = (
√

3
2 ,

1
2 ), ~e2 = (

√
3

2 ,−
1
2 ). For

convenience, we define ~e0 = (− 1√
3
, 0).

• s-wave pairing by NN AF in a honeycomb lattice:
∆ii+~e0 = ∆ii+~e0+~e1 = ∆ii+(~e1+~e2) = ∆0,
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• d±id-wave pairing by NN AF in a honeycomb lattice:
∆ii~e0 = e±i
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• s-wave pairing by 2nd NN AF in a honeycomb lattice:
∆ii±~e1 = ∆ii±~e2 = ∆ii±(~e1−~e2) = ∆0,

∆~k = ∆0
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• d±id-wave pairing by 2nd NN honeycomb in a honeycomb lattice:
∆ii±~e1 = e±i
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We define the overlap between reciprocal form factors ∆~k and Fermi surfaces as

W =

∫ ∫
dkxdky|∆~k|

2δ(ε~k − µ) (3)

To perform numerical calculations, we evaluate the above formular as follows

W =

∫ ∫
dkxdky|∆~k|

2Θ(ω − |ε~k − µ|)∫ ∫
dkxdkyΘ(ω − |ε~k − µ|)

(4)

where ω is a small positive value that is much less than the band width and Θ(x) is the unit step function defined as
Θ(x) = 1(0) if x > 0(x ≤ 0). W has very week dependence on ω. For a multi-band system with N bands, we evaluate

Wα for each band and define the average weight as W =
∑
αWα

N . This average weight is a good quantity to evaluate
approximately the overlap strength in iron-based superconductors since the gap functions of all the bands are fitted
to a single pairing form function as discussed in this paper.
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