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A precise method for visualizing dispersive features in image plots
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In order to improve the advantages and the reliability of the second derivative method in tracking
the position of extrema from experimental curves, we develop a novel analysis method based on the
mathematical concept of curvature. We derive the formulas for the curvature in one and two dimen-
sions and demonstrate their applicability to simulated and experimental angle-resolved photoemission
spectroscopy data. As compared to the second derivative, our new method improves the localization
of the extrema and reduces the peak broadness for a better visualization on intensity image plots.
© 2011 American Institute of Physics. [doi:10.1063/1.3585113]

I. INTRODUCTION

With the development of multi-channel detectors and the
recording of a huge amount of experimental data, the past
decade has witnessed a boom in the use of color images for
the representation of spectroscopic data in a very compact and
easily visualized way. Typically, a color scale is associated
with the experimental spectral intensity, which is displayed as
a function of two independent variables. For example, such
images are widely used in scanning tunneling microscopy
(STM),1–4 Raman scattering,5–7 inelastic neutron scattering
(INS),8–11 atomic force microscopy (AFM),12–14 resonant in-
elastic x-ray scattering (RIXS),15–18 and angle-resolved pho-
toemission spectroscopy (ARPES).19–30

This imaging process is particularly efficient to represent
energy band dispersions in the momentum or momentum-
transfer spaces, where the energy and the momentum (or
momentum-transfer) are the two independent variables.
Frequently though, many bands or features overlap or have
significant broadness, making direct visualization of the raw
data difficult. The main tool commonly used in ARPES
analysis to overcome this issue and to improve direct vi-
sualization of band dispersion is the second derivative of
intensity plots.20–29 Despite its success and widespread use,
the method of second derivative gives sometimes results that
differ slightly from the actual position of the maxima in the
energy distribution curves (EDCs), where the photoemission
intensity at fixed momentum is represented as a function of
energy, or in the momentum distribution curves (MDCs),
where the photoemission intensity at fixed energy is given as
a function of momentum. Alternatives must thus be found to
improve both accuracy and visualization of data.

In this paper, we develop an analysis method for study-
ing spectroscopic data based on the mathematical concept of
curvature in one-dimension (1D) and two-dimension (2D).
As an example, we apply this method to the study of elec-
tronic energy dispersion from ARPES data. We show two
major advantages of the curvature method over the second
derivative method: (i) the curvature method is more reliable in
tracking the position of extrema and (ii) the curvature method
can increase the sharpness of the dispersive features for a bet-

ter visualization effect. We prove the efficiency of this method
using both experimental and simulated data.

II. 1D CURVATURE METHOD

The concept of curvature is used to quantitatively deter-
mine how much a curve is not straight. It locally associates a
radius of curvature, which can be either positive or negative,
to a small segment along a curve. The mathematical definition
in 1D of the curvature C(x̃) associated to a function f (x̃) is
given by

C(x̃) = f ′′(x̃)

(1 + f ′(x̃)2)3/2
. (1)

For application to the spectroscopic data, for example,
to an EDC curve, f (x̃) may represent the signal intensity
whereas x̃ represents a unitless variable, such as normalized
energy. The normalization of a variable x that carries units
is done through a transformation, such as x/ξ → x̃ , where ξ

is a positive arbitrary constant with the same dimension as
x . Since experimental spectroscopic functions themselves are
usually defined to an arbitrary factor, f (x̃) carries the same
information as I0 f (x̃), where I0 is an arbitrary positive con-
stant. Taking into account the arbitrariness in the absolute val-
ues of x̃ and f (x̃), we can rewrite Eq. (1) as

C(x) = I0ξ
2 f ′′(x)

(1 + I 2
0 ξ 2 f ′(x)2)

3/2 . (2)

Since we are interested uniquely in the relative variations of
the curvature, this equation can be reduced further to

C(x) ∼ f ′′(x)

(C0 + f ′(x)2)
3/2 , (3)

where C0 is a free parameter. In order to understand the mean-
ing of C0, we test the previous equation in two limit cases:

0034-6748/2011/82(4)/043712/7/$30.00 © 2011 American Institute of Physics82, 043712-1

Downloaded 09 Aug 2011 to 159.226.35.218. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3585113
http://dx.doi.org/10.1063/1.3585113


043712-2 Zhang et al. Rev. Sci. Instrum. 82, 043712 (2011)

FIG. 1. (Color online) (a) Simulated ARPES intensity plot (see the text). (b) Spectral intensity (red curve) as a function of momentum (MDC) along the
horizontal red line in panel (a), compared to the curvature with different values of a0 (see the text). (c) Comparison between the spectral intensity as a function
of energy (EDC) along the vertical black line in panel (a), and the corresponding second derivative and curvature curves. (d) Same as (c) but for the spectral
intensity as a function of momentum along the red line in panel (a). The intensity of each curve in panels (b)-(d) has been normalized to 1 and the sign of the
second derivative and curvature curves has been reversed to facilitate visualization. The intensity plots of the second derivatives [curvature] of the simulated data
from panel (a) along the energy and momentum directions are given in (e) [(g)] and (f) [(h)], respectively.

(1) When C0 � f ′(x)2, i.e., when f ′(x)2 can be ignored, we
get

C(x) ∼ f ′′(x)

(C0 + f ′(x)2)
3/2 ∼ f ′′(x), (4)

which gives the same result as the second derivative
method.

(2) When C0 � f ′(x)2,

C(x) ∼ f ′′(x)

(C0 + f ′(x)2)
3/2 ∼ f ′′(x)

f ′(x)3 . (5)

This latter solution diverges at the extrema, where f ′(x)
= 0. As C0 approaches 0, the peak positions in C(x) are get-
ting closer and closer to the real peak positions. In the worst
case, when C0 → ∞, the curvature should provide a result
as good as the one given by the second derivative. There-
fore, the curvature is necessarily an improvement over the
second derivative method in tracking the peak positions. In
practice, we avoid singularities while maintaining the relia-
bility of C(x) by choosing an intermediate C0. Empirically,
we find out that the best compromise is reached when C0 is
of the order of the average or the maximum value of | f ′(x)|2.
Hereafter, we express C0 as a0| f ′(x)|2max , where a0 is a posi-
tive constant and | f ′(x)|max is the maximum value of | f ′(x)|.

To illustrate the reliability of the curvature analysis, we
simulate ARPES data using known parameters. The ARPES
photoemission intensity can be expressed by the product of
three terms: the Fermi-Dirac distribution fD(x), the spectral
weight A(k, ω) that contains all the information about the
dispersion, and a matrix element factor that depends on the
momentum, as well as on the energy and polarization of
the probing photons. Since the latter term does not carry any

information about the dispersion, we set it to 1. The spectral
weight can be expressed in terms of the energy dispersion εk

as

A(k, ω) = − 1

π

�′′(k, ω)

(ω − εk − �′(k, ω))2 + �′′(k, ω)2
, (6)

where �(k, ω)=�′(k, ω) + i�′′(k, ω) is the self-energy of
the quasi-particles. The self-energy is known to depend only
weakly on the momentum and its imaginary part usually
varies like ∼αω2 + c at low energy. Thus, we set the
self-energy to

�′(ω) = −α((1 − c)ω − (1 + c)ω3)√
2(1 + ω4)

, (7)

�′′(ω) = −αω2 + c

1 + ω4
, (8)

which satisfies the Kramers-Kronig transformation.31

Setting α = 3 and c = 0.15 eV, we plot simulated
ARPES data in Fig. 1(a) for the dispersion εk = 15k2

− 0.3 eV at a temperature (T ) of 20 K. The result has been
further convoluted by a Gaussian function along the energy
direction to simulate an energy resolution of 10 meV. In
Fig. 1(b), we compare the MDC along the red line in panel (a)
to curvature curves of that same MDC using different values
of a0. For a better comparison, the sign of the curvature
curves has been reversed and the maxima of all curves have
been normalized to 1. As expected for an asymmetrical
lineshape, the position of the curvature peak is slightly away
from the real peak position when a0 is large but converges to
that latter position with a decreasing a0. Moreover, the peak
sharpens rapidly as a0 decreases. Although this is obviously
an advantage in tracking its position, we note that it is
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necessary to refrain decreasing a0 too much while studying
multi-feature systems, since the sharpening of the peaks is
accompanied by an increase of intensity in the curvature,
which may affect the global contrast between all the features
represented on a single image. We also note that since we
are trying to find peak positions (maxima or inflections in
the spectra), only the positive parts of the sign-reversed
second derivatives and the sign-reversed curvatures have a
physical meaning (the approximate position of peaks), and
the negative parts are completely ignored.

In Figs. 1(c) and 1(d), we plot the EDC and MDC along
the black and red lines in panel (a), respectively, along with
their second derivative and curvature curves (normalized and
sign-reversed). Since both the MDC and EDC lineshapes
are asymmetric with respect to the peak positions, the sec-
ond derivative curves do not track the peak positions exactly
and a small shift towards the highest slope change is ob-
served. In contrast, the curvature analysis provides more re-
liable peak positions, in addition to giving sharper features.
We performed the second derivative analysis for all EDCs
and MDCs and we show the corresponding second deriva-
tive intensity plots in Figs. 1(e) and 1(f), respectively. Simi-
larly, the EDC- and MDC-curvature intensity plots associated
with the data of Fig. 1(a) are given in Figs. 1(g) and 1(h),
respectively. Obviously, the curvature method gives sharper
features and allows a better tracking of the band dispersion
as compared with the second derivative analysis. However, as
for the analysis of EDCs and MDCs and their corresponding
second derivatives, the 1D curvature method presented here
has some limitations over the whole range of energy and mo-
mentum. While the EDC-curvature method is quite reliable to
track the minima and maxima of band dispersions, it gives un-
reliable results near the Fermi cutoff, which itself appears as
a spectral feature. In contrast, the MDC-curvature method is
quite precise near the Fermi cutoff but fails to reveal precisely
the dispersion near extrema. Nevertheless, a cleaver combined
use of EDC- and MDC-curvature analysis allows to track the
band dispersion completely and precisely. A more sophisti-
cated analysis method is proposed in Sec. III.

We now test the 1D curvature method on real experimen-
tal data. In Fig. 2(a), we show an intensity plot recorded at
15 K corresponding to the low-energy band dispersion near
the Fermi wavevector (kF ) of the so-called α band in opti-
mally doped Ba0.6K0.4Fe1As1 (Tc = 37 K).32 As reported ear-
lier, the dispersion exhibits in the superconducting state a kink
or sudden slope change around 25 meV below the Fermi en-
ergy (EF ) due to an electron-mode coupling.33 Although the
kink is visible in the original image, it appears more clearly
in the MDC-second derivative plot shown in Fig. 2(b). As ex-
pected from the previous discussion, the result is even sharper
with the use of the MDC-curvature method, as illustrated in
Fig. 2(c). The second derivative method is particularly
efficient in ARPES for the study of band dispersion com-
plexes. In Fig. 2(d), we show an ARPES intensity cut of
Sr4V1O6Fe1As1 recorded at 40 K along the �−M direction.34

Within the wide energy range displayed (down to about
1.5 eV below EF ), many bands exist and overlap, and it
is very difficult to extract their band dispersion. The cor-
responding EDC-second derivative intensity plot shown in

FIG. 2. (Color online) (a) ARPES intensity plot (from Ref. 32). (b)[(c)]. Cor-
responding intensity plot of second derivative [1D curvature] along the mo-
mentum direction. (d) ARPES intensity plot (from Ref. 33). (e)[(f)] Corre-
sponding intensity plot of second derivative [1D curvature] along the energy
direction.

Fig. 2(e) is a clear improvement for the visualization of the
main bands. Once more, this advantage is reinforced with the
EDC-curvature method, as illustrated in Fig. 2(f). The bands
are sharper and the reliability in tracking the peak position is
improved.

III. 2D CURVATURE METHOD

Despite its ability to track band dispersions, the 1D cur-
vature method has some unavoidable problems when analyz-
ing intensity images. The main problem comes from the fact
that the images themselves, as well as the features they em-
phasize, are 2D rather than 1D objects. In this section, we
extend the 1D curvature method to a 2D method. As a first ex-
ample, we treat the simplified case where the two independent
variables determining the spectral intensity are equivalent. For
example, this situation applies to AFM and STM mappings,
for which both independent variables represent a distance, as
well as to ARPES Fermi surface mappings, for which both
independent variables represent a momentum component. Af-
terwards, we will focus on a more general case, where the in-
dependent variables are inequivalent, such as in the energy vs
momentum intensity plots used in ARPES to reveal energy
band dispersions.

A. Equivalent independent variables

The equivalent in 2D of the second derivative is the
Laplacian:

∇2 f = ∂2 f

∂ x̃2
+ ∂2 f

∂ ỹ2
. (9)

The passage from unitless variables (x̃, ỹ) to variables (x, y)
with same units modifies the equation only by a global fac-
tor that does not affect the global contrast between different
features on an image plot.

Similar to the second derivative, the mean curvature func-
tion has an equivalent in 2D for a function f (x̃, ỹ), which is
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given by

C(x̃, ỹ)

=

[
1 +

(
∂ f
∂ x̃

)2
]

∂2 f
∂ ỹ2 − 2 ∂ f

∂ x̃
∂ f
∂ ỹ

∂2 f
∂ x̃∂ ỹ +

[
1 +

(
∂ f
∂ ỹ

)2
]

∂2 f
∂ x̃2

2

[
1 +

(
∂ f
∂ x̃

)2
+

(
∂ f
∂ ỹ

)2
]3/2 .

(10)
When the independent variables carry the same units, we

need to use the transformations ∂/∂ x̃ → ξ∂/∂x and ∂/∂ ỹ →
ξ∂/∂y. Considering that the spectral function f is defined to
a factor I0, we get

C(x, y)

∼

[
C0 +

(
∂ f
∂x

)2
]

∂2 f
∂ y2 − 2 ∂ f

∂x
∂ f
∂y

∂2 f
∂x∂y +

[
C0 +

(
∂ f
∂y

)2
]

∂2 f
∂x2[

C0 +
(

∂ f
∂x

)2
+

(
∂ f
∂y

)2
]3/2 ,

(11)

where a global factor has been removed and C0 = (I0ξ )−2 is
a free positive parameter.

Let us now compare both 2D methods. In Fig. 3(a), we
plot a Chinese character (hǎo, which means “good”). The
character has been broaden by a Gaussian distribution and
further blurred by a boxcar filter. Although the character is
recognizable on the raw image, the strokes are not sharp.
The Laplacian of this image is displayed in Fig. 3(b). While
the Laplacian allows to sharpen the strokes a little, the latter
remain broad and the whole character appears distorted. In
contrast, the result obtained by the 2D curvature method
and shown in Fig. 3(c) gives a much better representation
of the original character, with very sharp strokes. Only little
distortion can be observed near stroke intersections and
near the beginning and the end of each stroke. Analysis of
real ARPES data with experimental noise leads to a similar
conclusion. In Fig. 3(d), we display the ARPES photoe-
mission intensity mapping around the Brillouin zone center
of a Ba0.6K0.4Fe1As1 sample, which has been integrated
over a ±10 meV energy range around the Fermi level. The

high intensity regions represent the Fermi surface. Although
the raw data are sufficient to distinguish the presence of
two Fermi surface sheets,32 the Fermi surface contours are
difficult to identify precisely. In this case, the Laplacian im-
proves the Fermi surface determination of the two concentric
Fermi surfaces centered at the Brillouin zone center. Further
improvement is provided by the 2D curvature, which makes
the Fermi surface contours narrower.

B. Inequivalent independent variables

Unfortunately, spectroscopic data cannot always be pre-
sented as 2D mappings with x and y axes having the same
units. This is particularly true when dealing with the momen-
tum space, such as in ARPES, INS, and RIXS. Commonly,
the results may represent the spectral intensity as a function
of energy and momentum or momentum-transfer. In that case,
the Laplacian can be adapted to variables x and y with dif-
ferent units by using the transformations ∂/∂ x̃ → ξ∂/∂x and
∂/∂ ỹ → η∂/∂y, where ξ and η are positive parameters carry-
ing the same units as x and y, respectively. Accounting once
more for a global positive factor I0 in the absolute value of
the experimental spectral response f , we obtain

∇2 f = I0ξ
2 ∂2 f

∂x2
+ I0η

2 ∂2 f

∂ y2
(12)

∼
(

ξ

η

)2
∂2 f

∂x2
+ ∂2 f

∂ y2
, (13)

where we removed a global factor. The latest equation has
only one independent parameter, ξ/η. A natural choice of the
parameter to capture the main features in an image plot is to
make the second derivative terms of the same order of mag-
nitude, which is done by setting the ranges of the data in x
and y to similar values. For a square grid, for example (same
number of columns and rows), that statement is equivalent to
ξ/η = �x/�y, where �x and �y are the stepsizes along the
x and y axes, respectively.

Similar to the Laplacian, Eq. (10) can be adapted to vari-
ables x and y with different units. Using the same transforma-
tions for x̃ and ỹ, we get

C(x, y) ∼

[
1 + Cx

(
∂ f
∂x

)2
]

Cy
∂2 f
∂ y2 − 2Cx Cy

∂ f
∂x

∂ f
∂y

∂2 f
∂x∂y +

[
1 + Cy

(
∂ f
∂y

)2
]

Cx
∂2 f
∂x2[

1 + Cx

(
∂ f
∂x

)2
+ Cy

(
∂ f
∂y

)2
]3/2 , (14)

where Cx = I 2
0 ξ 2 and Cy = I 2

0 η2 are the only two (positive)
free parameters for this equation. Using the same arguments
as for the Laplacian, we can set ξ/η = �x/�y to assure a
good visual representation. In this condition, we verify easily
that in the limit where I0 → 0, and thus Cx → 0 and Cy → 0,
Eq. (14) is simplified to

C(x, y) ∼ Cx
∂2 f

∂x2
+ Cy

∂2 f

∂ y2
, (15)

which is equivalent to our definition given in Eq. (12) of the
Laplacian with variables carrying units. In the opposite limit,
when I0 → ∞, we find

C(x, y) ∼
(

∂ f
∂x

)2
∂2 f
∂ y2 − 2 ∂ f

∂x
∂ f
∂y

∂2 f
∂x∂y +

(
∂ f
∂y

)2
∂2 f
∂x2[

Cx

(
∂ f
∂x

)2
+ Cy

(
∂ f
∂y

)2
]3/2 . (16)
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FIG. 3. (Color online) (a) Image representation of the Chinese character hǎo (see the text). (b)[(c)] Corresponding intensity plot of the Laplacian [2D curvature].
The original character in (a)-(c) is given by the red lines. (d) ARPES Fermi surface mapping of Ba0.6K0.4Fe1As1. (e)[(f)] Corresponding intensity plot of the
Laplacian [2D curvature].

The latest equation diverges when[
Cx

(
∂ f

∂x

)2

+ Cy

(
∂ f

∂y

)2
]3/2

= 0 (17)

⇒ |∇ f (x̃, ỹ)| = 0, (18)

which corresponds exactly to the position of the extrema of f .
Therefore, we conclude that the 2D curvature is necessarily
an improvement compared to the Laplacian in tracking the
position of extrema.

In Fig. 4, we compare the Laplacian and the 2D curvature
intensity plots for the simulated electronic dispersion given in
Fig. 1(a). As expected, the 2D curvature method gives sharper
features. In addition, it tracks the original band dispersion

FIG. 4. (Color online) (a) Laplacian of the simulated ARPES intensity plot
shown in Fig. 1(a). (b) 2D curvature of the simulated ARPES intensity plot
shown in Fig. 1(a).
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with higher accuracy over the whole range of energy. It is also
instructive to note that while the 1D curvature method using
EDCs and MDCs gives results better than the 2D curvature
near the band bottom and near the Fermi level, respectively,
the 2D curvature is more reliable over the whole energy range.

IV. DISCUSSION

As with the second derivative method, the curvature anal-
ysis technique described in this paper is a powerful method
to enhance dispersive features in a spectroscopic image. It
is very important to keep in mind that this is its only pur-
pose and that the information contained in the original spectra
is indeed richer, despite being sometimes difficult to access.
These visualization methods can thus be regarded as effective
complementary tools in understanding spectroscopic data. For
example, while the precise shape of MDCs and EDCs from
ARPES data are often intimately related to intrinsic scatter-
ing and other electronic interactions, information completely
lost in the curvature intensity plots, MDCs and EDCs are not
always good ways to represent dispersion. This is especially
true for multi-bands systems when bands are broad. Besides,
band dispersions are 2D objects (k vs E), which are thus
more naturally represented by a 2D image plot. Indeed, MDC-
and EDC-analysis in ARPES often lead to slightly different
dispersion, even though real electronic dispersions, namely,
E vs k relationships, are uniquely defined objects. By using
the 2D curvature method described here, it is possible to re-
move this ambiguity. However, we note that such analysis is
accurate only when we dispose off sufficient data along both
directions (E and k).

Although the curvature technique constitutes an obvious
improvement over the second derivative method in terms of
reliability and sharpness of the spectral features, its main
apparent disadvantage is the introduction of arbitrary param-
eters. As shown above, the curvature method is at least as
reliable as the second derivative method in tracking the peak
position of dispersive features, whatsoever the parameters
used. Similarly, the sharpness of the dispersive features is
also improved compared to the second derivative method.
In that sense, the arbitrariness of the parameters is not a
handicap. In fact, it gives some latitude to tune the relative
contrast between different features from a single image and
allow a better visualization effect.

V. CONCLUSIONS

We have developed a method based on the concept of
curvature to analyze spectroscopic image plots. As with the
second derivative method, which is widely used, the method
presented here is quite efficient for representing dispersive
features. Using simulated and experimental spectral images,
we demonstrated that compared to the second derivative
analysis, the new curvature method improves significantly
the reliability in tracking the dispersive feature. Moreover,
it sharpens spectral features for a better visualization of the
spectroscopic features.
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