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The electronic structure of NaxCoO2 revealed by recent photoemission experiments shows important
deviations from band theory predictions. The six small Fermi surface pockets predicted by local-density
approximation calculations have not been observed as the associated e0g band fails to cross the Fermi level
for a wide range of sodium doping concentration x. In addition, significant bandwidth renormalizations of
the t2g complex have been observed. We show that these discrepancies are due to strong electronic
correlations by studying the multiorbital Hubbard model in the Hartree-Fock and strong-coupling
Gutzwiller approximation. The quasiparticle dispersion and the Fermi surface topology obtained in the
presence of strong local Coulomb repulsion are in good agreement with experiments.
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The cobaltates (NaxCoO2) are doped 3d transition metal
oxides in which the Co atoms form a layered hexagonal
lattice structure. In contrast to the high-Tc cuprates, where
the Cu2� has a 3d9 configuration and occupies the highest
single eg (dx2�y2) orbital near the Fermi level, the cobal-
tates are multiorbital systems where the Co4� is in the 3d5

configuration, occupying the three lower t2g orbitals, simi-
lar to the ruthenates (Sr2RuO4). The unexpected discovery
[1] of a superconducting phase of yet unknown origin in
hydrated NaxCoO2 around x� 0:3 has generated renewed
interests in this material. However, such basic issues as the
low energy electronic structure and Fermi surface topology
in the cobaltates have not been well understood. Local-
density approximation (LDA) calculations [2] find that the
trigonal symmetry of the Co site in the triangular lattice
splits the three t2g complex into an a1g and two degenerate
e0g states at the zone center (� point). The LDA predicts a
large Fermi surface (FS) associated with the a1g band
enclosing the � point and six small FS pockets of mostly
e0g character near the K points [2,3].

However, recent angle-resolved photoelectron spectros-
copy (ARPES) measurements on the cobaltates revealed
only a single holelike FS centered around the � point for a
wide range of Na concentration x [4–7]. The area enclosed
by the FS exhausts the Luttinger volume, which is consis-
tent with the observation that the dispersion of the e0g band
associated with the FS pockets lies below and never crosses
the Fermi level [4]. The absence of the FS pockets is
unexpected and puts serious constraints on several pro-
posed theories of nonphonon mediated superconductivity
as well as magnetic properties based on the nesting con-
ditions of the FS pockets [8–10]. Furthermore, the mea-
sured quasiparticle bandwidths are significantly narrower
than the LDA predictions [4]. These fundamental discrep-
ancies between ARPES and LDA suggest that the effects
of strong electronic correlations are important in the co-
baltates. The effects of local Coulomb repulsion U has
been considered in the local spin density approximation
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� Hubbard U (LSDA � U) approach, which indeed finds
the absence of the small FS pockets [11]. However, the
latter is tied to the fully polarized ferromagnetic state
which gives spin-split bands and a spin polarized FS with
an area twice as large. This is inconsistent with ARPES and
likely an artifact of the LSDA � U approximation. A re-
cent calculation based on the multiorbital Hubbard model
and the dynamical mean-field theory finds that the FS
pockets become even larger in size than the LDA predi-
cations [12].

The focus of the present work is to explain how strong
correlations drive orbital polarization and the band narrow-
ing observed in ARPES. We adopt a multiorbital Hubbard
model description where the noninteracting part is deter-
mined by fitting the LDA band structure. The interacting
part contains both the intraorbital (U) and the interorbital
(U0) local Coulomb repulsion as well as the Hund’s rule
coupling JH. First, a basis independent Hartree-Fock (HF)
calculation is performed which is in essence a LDA � U
calculation in the paramagnetic phase. We find that for U0

much less than U, multiorbital occupation is favored in
order to reduce the cost of double occupation. As a result,
the HF self-energy renormalizes the atomic level spacing
in such a way that the size of the FS pockets associated
with the e0g band grows. This trend is, however, reversed
when U0 grows and becomes comparable to U. In the HF
theory, the size of the e0g FS pockets begins to shrink for
U0=U > 3=5. To correctly capture the physics of strong
correlation for large U and U0, we generalize the
Gutzwiller approximation to the case of multiorbitals.
We find that, in the strong-coupling regime, orbital polar-
ization is tied to Pauli blocking, i.e., the orbital occupation
dependence of the Gutzwiller band renormalization fac-
tors. We obtain both band narrowing and the disappearance
of the FS pockets, in good agreement with the ARPES
experiments.

We start with the multiorbital tight-binding model on a
two-dimensional triangular lattice,
1-1  2005 The American Physical Society



PRL 94, 206401 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
27 MAY 2005
H0 � �
X
ij;�

X
��

tij;��d
y
i��dj�� �

�

3

X
i;�

X
���

dyi��di��; (1)

where the operator dyi�� creates an electron in the � orbital
with spin � on the Co site and tij;�� is the hopping integral
between the � orbital on site i and the � orbital on site j.
The relevant valence bands near the FS consist of the Co
t2g � fdxy; dyz; dzxg orbitals and have an electron occu-
pancy of 5 � x. The � in Eq. (1) describes the trigonal
crystal field that splits the t2g complex into a lower a1g
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For convenience, we will work in the hole picture via a
particle-hole transformation d ! ~dy, in which the band
filling of holes is 1 � x. The structure of the tight-binding
Hamiltonian in k space is

H0 �
X

k;�;��

Kd
��	k
~d

y
k��

~dk�� �
�

3

X
k;�;���

~dyk�� ~dk��: (2)

The hopping matrix K in the t2g basis is given by
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with 	1; 2; 3
 � 	k1; k2; k3
, k1 �
���
3

p
kx=2 � ky=2,

k2 � ky, k3 � �k1 � k2, and "	t; 1; 2; 3
 � 2t1 cosk1 �

2t2	cosk2 � cosk3
 � 2t3 cos	k2 � k3
 � 2t4cos	k3 �
k1
 � cos	k1 � k2
� � 2t5 cos	2k1
 � 2t6cos	2k2
 �
cos	2k3
� � � � � . The 	t; t0
 denote the (intra-, inter-) orbi-
tal hopping.

Figure 1 shows the fitting of the tight-binding disper-
sions obtained by diagonalizing Eq. (2) to the LDA band
structure at x � 1=3 [3]. We note that the fit with up to
third-nearest-neighbor (NN) hopping or more describes the
LDA bands quite well. On the other hand, the tight-binding
model cannot reproduce completely the LDA dispersions
even with up to eighth-NN hopping. The discrepancy is
most pronounced along the M-K direction where the two
e0g bands cross in the tight-binding fit [Fig. 1(a)]. Similar
disagreement can be traced back to the previous tight-
binding fits [10,12,13]. We believe the difficulty arises
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FIG. 1 (color online). Tight-binding fits to the LDA band
structure at x � 1=3. (a) The fitted band dispersions with up to
third-, fifth-, and eighth-NN hopping. The corresponding Fermi
surfaces are plotted in (b), (c), and (d), respectively.
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from the hopping path via the O 2s and 2p orbitals.
Nevertheless, the tight-binding model works very well at
low energies near the Fermi level. The FS consists of a
cylindrical sheet around the � point and six hole pockets
near the K points, as shown in Figs. 1(b)–1(d). The central
FS has a dominant a1g character, while the six FS pockets
are mainly of the e0g character. The hopping integrals
obtained from the fit with up to third NN are t �
	�44:6;�9:0; 36:2; 5:9; 57:9; 36:7
 meV and t0 � 	�157:8;
�30:2;37:1;9:2;�11:9;�21:0
meV. The crystal-field
splitting � is chosen to be 0.01 eV. In the rest of this
Letter, we use these parameters for H0. Our results are
insensitive to these values, so long as that they provide a
good fit of the LDA band structure near the FS. In the a1g

and e0g basis (hereafter referred to as the fag basis), the hole
occupations are 0.123 (e0g) and 0.421 (a1g), respectively.
Despite its higher orbital energy, the a1g hole orbital has a
higher occupation due to its larger bandwidth.

The correlation effects are described by the multiorbital
Hubbard model H � H0 �HI, where H0 is the tight-
binding Hamiltonian in Eq. (2), HI represents the local
Coulomb repulsion U (intraorbital) and U0 (interorbital),
and Hund’s rule coupling JH. For t2g orbitals, HI has been
shown to take the form [14]
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X
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�
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with U0 � U� 2JH. Here n̂i� and Si� are the density and
the spin operators in the fag basis where H0 is
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Here �� � ��=3 and 2�=3 for the e0g and a1g orbitals,
respectively. The hopping matrix Ka	k
 � OTKd	k
O,
with O the orthogonal rotation from the t2g to the fag basis.
HI is identical in these two bases. The hierarchy of the
interaction strength is U >U0 > JH � 0.

We first study the effects of interactions in the HF theory
in the orbital sector. In the paramagnetic phase, the inter-
acting Hamiltonian is given by
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where n�� � $k;�n
�
��	k
, n���	k
 � hayk��ak��i, n� �

n��, and U0
eff � U0 � JH=2. In essence, this HF analysis,

also discussed in Ref. [12], is equivalent to the LDA � U
theory [15]. Since we are interested in the orbital depen-
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dent corrections, we have not displayed in Eq. (6) the
double-counting term which corrects for the energy al-
ready included in the LDA, because it depends only on
the total density.

Note that the HF theory is basis independent. It is thus
convenient to stay in the fag basis where the local-density
matrix is diagonal in orbital space, i.e., n��� � 0. Then
the average energy has contributions only from the first
two terms in Eq. (6). Recall that most of the holes reside in
the a1g orbitals. If U0

eff <U=2, it is favorable to increase
the population of the e0g orbitals to take advantage of the
smaller interorbital repulsion U0

eff . On the other hand, for
U0

eff >U=2, the tendency is to empty the e0g orbitals in
favor of a1g occupation. The crucial factor of 1=2 in front
of U comes from the fact that, due to exchange, intraorbital
repulsion operates only between holes with opposite spin,
whereas both spins contribute to U0

eff .
We proceed to calculate the HF self-energy in terms of

the average %n � 	na1g
� 2ne0g
=3 � 	1 � x
=3 and the dif-

ference  � 	na1g
� ne0g
=3 between the hole occupation of

the a1g and e0g orbitals,

$HF
e0g

�
1

2
%nU	1 � 4!
 �  U	!� 1=2
; (7)

$HF
a1g

�
1

2
%nU	1 � 4!
 � 2 U	!� 1=2
; (8)

where ! � U0
eff=U. The interaction effect in the paramag-

netic HF theory is simply to shift the atomic levels by $HF
e0g

and $HF
a1g

, respectively, resulting in a renormalization of the
atomic level spacing �0 � �3 U	!� 1=2
. As expected,
the direction of the charge transfer depends on the ratio !.
Since the majority of the holes resides in the a1g orbital in
the noninteracting limit,  > 0. Thus, for !< 1=2, the
level splitting renormalizes upward, �0 > 0, and interac-
tions induce a transfer of carriers from the a1g to the e0g
orbital. The self-consistent HF results are shown in Fig. 2
at x � 1=3 for U � 3 eV, which is close to the value
(3.7 eV) estimated from the LDA [13]. For ! � 1=3, the
size of the hole pockets indeed becomes larger than that of
the noninteracting or LDA ones. At ! � 1=2, �0 � 0, and
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FIG. 2 (color online). HF results for U � 3:0 eV at x � 1=3.
The band dispersions are shown for ! � 1=3, 1=2, and 2=3.
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the noninteracting (LDA) band dispersions are unchanged
as shown in Fig. 2. When !> 1=2, i.e., for U0=U > 3=5 or
JH=U < 1=5, which is reasonable for the cobaltates [11],
the level splitting renormalizes downward, �0 < 0, trig-
gering a transfer of holes from the e0g to the a1g orbital.
The six FS pockets continue to shrink as the e0g band sinks
with increasing ! and disappear beyond a critical ratio
!c, as shown in Fig. 2 for ! � 2=3. We find that
!c	U � 3:0 eV
 ’ 5=8.

The HF analysis shows that the disappearance of the six
FS pockets near the K points is the physics of large U and
U0 compared with JH. In this case, the HF theory itself
becomes unreliable. Moreover, the localization tendency
leading to the bandwidth reduction cannot be captured
by the HF theory. It is therefore instructive to study the
problem in the strong-coupling limit by projecting out
the states of double-occupation prohibited by the large
on-site Coulomb repulsions. This can be achieved by the
Gutzwiller projection j&i � PGj&0i, where PG is the pro-
jection operator that removes the double occupancy by
electrons from both the same and different orbitals in the
noninteracting state j&0i. This variational procedure is
most conveniently implemented in the Gutzwiller approxi-
mation where the effect of projection is taken into account
by the statistical weighting factor multiplying the quantum
coherent state [16]. Specifically, we approximate the hop-
ping term by

h&jayi��aj��j&i � g��t h&0ja
y
i��aj��j&0i; (9)

where the Gutzwiller renormalization factor gt is given by
the ratio of the probabilities in the hopping process in the
projected j&i and the unprojected j&0i. We find

g��t �
x��������������������������������������������

	1 � ni��
	1 � nj��

q : (10)

It is important to note that in a multiorbital system g��t
depends on the occupation of the orbitals connected by the
hopping integral as seen in the denominator in Eq. (10).
The latter originates from the Pauli principle. It compen-
sates for the effects of ‘‘Pauli blocking’’ of double occu-
pation by electrons in the same quantum states which al-
ready operate in the free fermion term on the right-hand
side of Eq. (9), while the numerator x describes the ‘‘Cou-
lomb blocking’’ due to the large on-site U and U0. It turns
out that the denominator is crucial for carrier transfer and
orbital polarization in the strong-coupling limit. In the uni-

form paramagnetic phase, g��t � 2x=
������������������������������������
	2� n�
	2� n�


q
.

The orbital occupations are variational parameters deter-
mined by minimizing the ground state energy of the
Hamiltonian,
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1-3



0.2 0.4 0.6 0.8

-0.12

-0.1

-0.08

-0.06

∆′

0.2

0.4

0.6

0.8z
z

 gnicapS leve
L

∆′
)

Ve( 

 r
ot

c a
f  

gn
i

wo
r r

a n
-d

na
B

z

Doping x

z
2 = 
x

+1(/
x)

z
 = x

g

a1g

e′

FIG. 3 (color online). The doping x dependence of the level
spacing and bandwidth renormalization for the a1g and e0g
orbitals.
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where "� is the Lagrange multiplier enforcing the occupa-
tion n�. It is determined by the self-consistency equation

"� �
1

2 � n�

X
k;�;�

g��t Ka
��ha

y
k��ak��i: (12)

The right-hand side of this equation is the derivative of the
kinetic energy of band � with respect to n�, and can be
understood by the following argument. The transfer of a
hole from band � to � causes the respective bandwidths to
decrease and increase by O	1=Ns
. However, the kinetic
energies of the occupied states in each band are changed by
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FIG. 4 (color online). The band dispersions and the Fermi
surfaces in the strong-coupling limit (red solid lines) for doping
x � 0:3, 0.5, and 0.7. The noninteracting dispersions (blue
dashed lines) are also plotted for comparison.
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order unity, and this energy difference must be reflected in
the equilibrium condition by an energy shift "�. Thus in
contrast to HF theory, there is no energy cost proportional
to U. Instead, both the band narrowing and the renormal-
ization of the level spacing �0 � "a1g

� "e0g contribute to
the redistribution of holes among the orbitals. In Fig. 3, we
show the self-consistently determined band-narrowing fac-
tor z� � g��t and the renormalized level spacing. For
orbitals with a larger hole occupation, the bandwidth re-
duction is smaller and the renormalized band energy is
lower, resulting in the transfer of more holes into these
bands. The combined effects cause the holes to move out of
the e0g band into the a1g band.

The calculated band dispersions and the FS topology at
x � 0:3, 0.5, and 0.7 are shown in Fig. 4. The six hole
pockets are completely absent due to strong correlation
which pushes the e0g band below the Fermi level, leading to
an orbital polarized state with a single hexagonal Fermi
surface centered around the � point satisfying the Luttinger
theorem. This, as well as the band narrowing due to strong
Coulomb repulsion, is in very good agreement with the
photoemission experiments [4]. The absence of the small
FS pockets, which would have contributed significantly to
the density of states in band structure calculations, further
suggests that the large mass enhancement observed in the
specific heat measurement [17] is due to strong correlation.
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