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Extraction of the electron self-energy from angle-resolved photoemission data:
Application to Bi 2Sr2CaCu2O81x
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The self-energyS(k,v), the fundamental function that describes the effects of many-body interactions on an
electron in a solid, is usually difficult to obtain directly from experimental data. In this paper we show that by
making certain reasonable assumptions, the self-energy can be directly determined from angle-resolved pho-
toemission data. We demonstrate this method on data for the high-temperature superconductor
Bi2Sr2CaCu2O81x in the normal, superconducting, and pseudogap phases.@S0163-1829~99!13433-7#
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I. INTRODUCTION

The propagation of an electron in a many-body system
described by the Green’s function,G(k,v)51/@v2ek
2S(k,v)#, whereek is the bare energy of the electron an
the self-energyS(k,v) encapsulates the effects of man
body interactions. A detailed knowledge ofS(k,v) is of
critical importance in elucidating the microscopic physics
the system. If itsk dependence is not important, one c
obtain information aboutS from a probelike tunneling tha
measures the density of states given by ak sum of the imagi-
nary part ofG. This was exploited to get a very detaile
microscopic understanding of strong-coupling electro
phonon superconductors1 like lead. In general, though, ifS
depends onk, then momentum-averaged probes cannot
used to extract the self-energy.

The only trulyk-resolved probe is angle-resolved phot
emission~ARPES!. Under the assumption that the ‘‘sudden
approximation applies~that is, one can ignore the interactio
of the photohole with the outgoing photoelectron!, for quasi-
two-dimensional~2D! systems~since the component of th
momentum perpendicular to the surface is not conserve
the photoemission process!, and assuming only a single in
tial state~one ‘‘band’’!, then the photocurrent can be writte
in the following form:2,3

I ~k,v!5Ck(
dk

E dv8A~k8,v8! f ~v8!R~v2v8!1B,

~1!
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whereCk is an intensity prefactor~proportional to the square
of the dipole matrix element between initial and final state!,
A5(21/p)Im G is the single-particle spectral function,f is
the Fermi function, andR a Gaussian energy resolution fun
tion ~photon monochromator and detector!. The sum(dk is
over a small window ink space due to the finite angula
aperture of the detector.B is the background, which contain
extrinsic effects, such as inelastic scattering of the photoe
trons ~secondaries!.

In this paper, we exploit Eq.~1! to determine the electron
self-energy, and illustrate this for ARPES data on the hig
temperature superconductor Bi2Sr2CaCu2O81x ~Bi2212!. In
Sec. II, we introduce the methodology that is necessary
extract the self-energy from the data. In Sec. III, we disc
the issue of background subtraction. In Sec. IV, various
sults are presented for Bi2212 in the normal, supercond
ing, and pseudogap phases. Finally, some concluding
marks are offered in Sec. V.

II. METHODOLOGY

Let us assume we knowA. Given that, we can easily
obtainS. A Kramers-Kronig transform ofA will give us the
real part ofG,

ReG~v!5PE
2`

1`

dv8
A~v8!

v82v
, ~2!
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where P denotes the principal part of the integral. Know
now both ImG and ReG, then S can be directly read off
from the definition ofG,

Im S5
Im G

~ReG!21~ Im G!2
,

ReS5v2e2
ReG

~ReG!21~ Im G!2
. ~3!

To obtain ReG using Eq.~2! we need to knowA for all
energies. From ARPES, though, we only know the prod
of A and f. ~While unoccupied states can be studied by
verse photoemission, its resolution at present is too poo
be useful for our purposes.! This is not a limitation if an
occupiedk state is being analyzed and one can either ign
the unoccupied weight or use a simple extrapolation fo
~except that only ReS1e is determined!. On the other hand
one is usually interested ink vectors near the Fermi surfac
Therefore a key assumption will have to be made. We
implement our procedure if we make the assumption
particle-hole symmetry,A(ek ,v)5A(2ek ,2v), within the
small k window centered atkF . Then,A is obtained by ex-
ploiting the identity A(ek ,v) f (v)1A(2ek ,2v) f (2v)
5A(ek ,v), which holds even in the presence of the ene
resolution integration in Eq.~1!. Note, this can only be in-
voked atkF , and was used in our past work to remove t
Fermi function from ARPES data,4,5 where it was denoted a
the symmetrization procedure~note that the ‘‘symmetrized’’
data will correspond to the raw data forv&22.2 kT!. Al-
though the particle-hole symmetry assumption is reason
for small uvu where it can be tested in the normal state
seeing whether the ‘‘symmetrized’’ spectrum has a ma
mum at the Fermi energy (EF), it will almost certainly fail
for sufficiently largev.0. Nevertheless, since we only e
pect to deriveS for v,0, then the unoccupied spectr
weight will affect the result only in two ways. The first i
through the sum rule*dvA(v)51, which must be used to
eliminate the intensity prefactorCk in Eq. ~1!. From Eq.~3!,
we see that violation of the sum rule will simply resca
Im S, but not ReS due to thev2e factor. Our normaliza-
tion, though, is equivalent to assumingnkF

50.5, and thus
does not involve ‘‘symmetrized’’ data. The second influen
comes from the Kramers-Kronig transformation in Eq.~2!,
which is a bigger problem. Fortunately, the contributi
from largev8.0, for which our assumption is least valid,
suppressed by 1/(v82v). Further, forkF , ek50, and thus
ReS is not plagued by an unknown constant.

Some comments should be made about using real d
Data noise is amplified in the Kramers-Kronig transform
tion in Eq. ~2!, and it is desirable to filter the data. We ha
found for our purposes that a wavelet transform works
cellently in this regard, in that it provides smoothed da
without any distortion of intrinsic spectral features, such
the quasiparticle peak. We employ a ‘‘denoising’’ algorithm6

that transforms the data into the ‘‘wavelet domain’’ usi
class 6 complex Daubechies wavelets.7 Then, all wavelet
components with absolute values below a certain thresh
are set to zero and the data are transformed back into
signal domain. The threshold is set at a level that remove
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~or most! of the noise from the data. The advantage of us
a wavelet transform, over, e.g., a Fourier filter, comes fr
the localized nature of the wavelets in the signal and wav
domain, i.e., the removal of noise from one portion of t
data has no effect on intrinsic features elsewhere.

Moreover, it is desirable to obtain a self-energy that is n
artificially broadened inv due to energy resolution. This i
handled by deconvoluting the energy resolution out of
data using a maximum entropy method8 based on the ‘‘Cam-
bridge Algorithm’’9 which we have found to be quite stabl
Here, the entropy of a distribution is defined to beS
52(npn ln pn , where pn is the intensity at pointn. The
algorithm locates the solution with maximum entropy, su
ject to its being consistent with the data when convolu
with the experimental resolution. Consistency testing is do
using thex2 statistic (C), C5(n(Dn2FnR)2/sn

2 , whereDn

are the data,FnR is the solution (Fn) convoluted with the
resolution function (R), andsn

2 is the variance of datumn.
Since a completely flat solution has maximum entropy,
algorithm selects the smoothest~‘‘deconvoluted’’! solution
consistent with the original data and should only gener
structures that are demanded by the data, i.e., those whic
above the noise. To minimize the effects of the resoluti
we use a high-resolution data set (s57.5 meV, FWHM518
meV! in the low binding energy range, and combine th
with a lower-resolution data set (s515 meV, FWHM535
meV! to extend the spectrum out to higher binding ener
~this takes advantage of the fact that sharp spectral struct
only appear at low binding energies!. The effects of broad-
ening due to the finite momentum window can be minimiz
by looking at regions of the Brillouin zone where the dispe
sion is weak, which is the case considered here~our momen-
tum window has a radius 0.045p/a). This will be less of an
issue when considering data from the new high-resolut
detectors currently becoming available, where the mom
tum window can be smaller in area by a factor of 25 or mo

III. BACKGROUND SUBTRACTION

We now illustrate our method by using data from t
high-temperature superconductor Bi2212. We choose
material because of its obvious interest to the condens
matter physics community, the electronic phases it exhi
as a function of doping and temperature, its lack of disp
sion along thec axis that justifies the 2D approximation im
plicit in Eq. ~1!,10 and our own strong familiarity with its
spectra. On the downside, there is the background issue
plicit in Eq. ~1!. Looking at the ARPES spectra over a larg
binding energy range, we see that the near-EF spectral fea-
tures of interest to us ride on top of a large background. N
only is it too large to be ascribed entirely to the incohere
part of the spectral functionA, the ratio of the spectral pea
to the background changes with photon energy implying t
most, if not all of the background, is extrinsic. This is su
ported by the fact that the magnitude of the background
sensitive to the photon incident angle and polarizati
Moreover, for k vectors where the spectral peak has d
persed throughEF , this background is still present. It is fla
in energy and extends all the way toEF aboveTc , but is
gapped in the superconducting state. Taking all of the ab
facts into account, the likely source of the background
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scattering from otherk vectors outside the nominal mome
tum window, probably due to surface roughness and/or
incommensurate nature of the Bi2212 superstructure.

There are a number of potential ways in which to subtr
this background. An ideal way if one is along a symme
axis ~seldom the case! is to subtract data from perpendicul
photon polarizations so as to recover that part of the sig
that obeys the appropriate dipole selection rules. In prac
one is usually limited to subtracting data from two perpe
dicular k vectors since the polarization is fixed. Moreove
the finite diameter of the momentum window, possib
sample alignment errors, and the enhancement of noise
to subtracting two data sets, limit the effectiveness of t
method. Another possibility is to subtract data from an u
occupiedk vector under the assumption that it is all bac
ground. The obvious problem here, besides the abo
mentioned amplification of data noise due to subtracting
data sets, is the strong variation of the dipole matrix eleme
in the Brillouin zone11 that can also act to modulate the i
tensity of the background from onek vector to the next.

Because of this, we have instead explored models
capture the essence of the observed background, in parti
a step-edge~flat! background and a ‘‘Shirley’’ background.12

The latter is of the form13

I ~v!5P~v!1cShE
v

`

dv8P~v8!, ~4!

whereI is the total intensity andP that due to primary elec
trons ~thus, one solves forP by simple matrix inversion!.
Although the step-edge background looks like the ARP
intensity seen for unoccupiedk states~hence its motivation!,
it has the disadvantage of having three adjustable param
~its height, and the position and width of its leading edg!.
Despite the fact that the Shirley background is designed
model secondary emission, an unlikely source of
background,13,14 it is similar to the step-edge backgroun
has the advantage of only one adjustable parameter, and
been used extensively in previous treatments.15,13

To implement the background subtraction, the hig
energy tail of the data is fit to a constant plus a Lorentzi
and thencSh in Eq. ~4! is varied such that this constant b
comes zero. This results in a smaller background than sim
forcing the intensity to be all background beyond some
ergy. This is done for data up to 0.5 eV where a minimum
seen in the spectrum, since beyond this, the spectrum
and thus the ‘‘tail’’ becomes completely buried under em
sion associated with the main valence band. For ener
beyond 0.5 eV, we assume this Lorentzian tail when p
forming the integral~to infinity! in Eq. ~2! ~real, not fitted,
data is used below 0.5 eV, of course!. The purpose of this
procedure is to avoid artificially forcing ImS to zero at some
cutoff ~a power-law tail is not used because the result
integral would not be convergent!. Once this background is
subtracted, then the data are symmetrized~by adding the data
at positive and negative energies!, normalized~by invoking
the sum rule!, then Kramers-Kronig transformed, which
done analytically by assumingA to be linear between dat
points ~the Lorentzian tail beyond 0.5 eV has an analy
transform, of course!. A similar procedure is used for th
step-edge background. The height of the step is determ
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by fitting the high-energy data to a constant plus a Loren
ian. In the superconducting state, the position and width
the step’s leading edge is determined by fitting the lo
energy data to a Fermi function~whose ‘‘chemical poten-
tial’’ is the position and whose ‘‘temperature’’ is the widt
of the step! plus a Gaussian~modeling the spectral peak!. In
the normal state, the step-edge background simply rever
a constant in the symmetrized data and so no low-ene
modeling is necessary.

IV. RESULTS

In Fig. 1, we show symmetrized data at the (p,0)
2(p,p) Fermi crossing for aTc572 K overdoped sample a
T580 K, and thus in the normal state. Note that the spec
peak is centered at zero energy, consistent with being akF
with the zero of energy atEF . The line is a fit to a Lorent-
zian plus a constant~flat background!, and is an excellent
representation of the data@with a half width at half maxi-
mum ~HWHM! of 55 meV#. This Lorentzian spectral shap
at k is sufficiently broad to make the quasiparticle ill define
but may seem unusual given the supposedly expected
ginal Fermi-liquid form.16 We have always found Lorentzia
fits to work well in the vicinity of the (p,0) point in the
normal state.17 Moreover, in Bi2201, where the normal sta
can be accessed over a large temperature range, we a
find equally good Lorentzian fits even at low temperatur
The difference from optical conductivity data,18 which do
indicate a marginal Fermi-liquid form, may be resolved
noting that the region near (p,0) makes little contribution to
the in-plane transport due to the flat dispersion. In fact, n
the direction (0,0)2(p,p), a case has been made that
marginal Fermi-liquid line shape can adequately describe
data if a background subtraction similar to what we emp
here is done.15,13 This points to the possibility of a variation
of the momentum dependence ofS along the Fermi surface
which our method can, in principle, explore with the adve
of new detectors with improved momentum resolution.
nally, we note that if we restrict away from small energies
constant plus a power law fits the data as well as a cons
plus a Lorentzian. Typically, the~negative! powera is such
that uau,1 ~smaller for smaller doping!, which would be
consistent with a non-Fermi-liquid line shape.19,20 The ad-
vantage of the Lorentzian is that it goes through all the da

FIG. 1. Symmetrized spectrum for overdoped Bi2212 (Tc572
K! at T580 K at the (p,0)2(p,p) Fermi crossing, with the line a
fit to a constant plus Lorentzian. For visual purposes, it is shown
v.0, though we expect reliable information only forv,0. This
applies to all the figures.
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not just the higher-energy part, though this may be fortuito
if part of the ‘‘background’’ turns out to be intrinsic~the
power-law fit has the potential advantage of a smaller c
stant background than the Lorentzian fit!. A power-law tail
would also be divergent in Eq.~2!, and thus would have to
be cut off~how to do this is not clear, since the tail is burie
under the main valence-band emission!. This issue will hope-
fully be resolved in the future by doing a detailed analysis
the spectra as a function of photon energy, photon incid
angle, and polarization to determine how much of the ‘‘ba
ground’’ is truly extrinsic. Once this is achieved, a clos
representation of the true self-energy can be obtained.

In Fig. 2~a!, we showT514 K symmetrized data for a
Tc587 K overdoped sample at the (p,0) point ~data of Ref.
21!. We note the important differences in th
superconducting-state spectrum, compared with the norm
state spectrum in Fig. 1, due to the opening of the superc
ducting gap, with the appearance of a sharp quasipar
peak displaced fromEF by the superconducting gap, fo
lowed by a spectral dip, then by a ‘‘hump’’~Ref. 22! at
higher binding energies ~where the normal- and
superconducting-state spectra coincide3,21!. This unusual dip-
hump structure is only seen near (p,0). The resultingS is
shown in Figs. 2~b! and 2~c!. At high binding energies, one
obtains a constant ImS as expected from the Lorentzian b
havior aboveTc in Fig. 1. Note the very large valu
(;300 meV!, much larger than that implied by Fig. 1~this is

FIG. 2. ~a! Symmetrized spectrum~smoothed and Shirley sub
tracted! for overdoped Bi2212 (Tc587 K! atT514 K at (p,0) with
~dotted line! and without~solid line! resolution deconvolution. The
resulting ImS and ReS are shown in~b! and~c!. The dashed line
in ~c! determines the condition ReS5v.
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verified by the normal-state spectrum, which has a mu
larger HWHM than the normal-state spectrum of Fig.!.
That is, the magnitude of ImS strongly increases with re
duced doping. Near the spectral dip, ImS has a small peak
followed by a sharp drop, which we had earlier inferred21

from the spectral shape guided by fits to the data.23 This
behavior is expected if the electrons are interacting with
spectral distribution gapped by 2D in the superconducting
state together with a sharp collective-mode inside theD
gap. The current results fully confirm the collective mo
explanation proposed in Refs. 21 and 23.

Despite this sharp drop below 70 meV, ImS remains
quite large at low frequencies. That is, the quasiparticle p
is not resolution limited. Its flat behavior (v6;v7) between
20 and 60 meV is consistent with theT6 dependence of the
quasiparticle peak width noted in Ref. 5. Then, below
meV, there is a narrow spike in ImS. This is the imaginary
part of the BCS self-energy,D2/(v1 i01), which ‘‘kills’’
the normal-state pole atv50. The resulting 1/v divergence
of the real part ReS, which creates new poles at6D532
meV, is easily seen in Fig. 2~c!. This is followed by a strong
peak in ReS near the spectral dip energy, which follow
from the Kramers-Kronig transformation of the sharp drop
Im S. The strong peak in ReS explains why the low-energy
peak inA is so narrow despite the large value of ImS. The
halfwidth of the spectral peak is given byG5Im S/Z, where
Z512] ReS/]v ~the inverse of the quasiparticle residue!.
In the vicinity of the spectral peak,Z is large (;9), giving a
G of ;14 meV. We note, though, thatG is still quite sizable,
and thus the peak is not resolution limited. As the peak
dispersionless near (p,0),21 this width is unlikely to be due
to momentum resolution, which was verified by simulatio
One could ask if it were due to an improper energy reso
tion deconvolution. This is highly unlikely, which was als
checked by simulation. For instance, if one fits the ze
energy spike in ImS to a constant plus a Lorentzian, th
resulting Lorentzian is extremely narrow~with a HWHM of
2 meV!.

It is crucial to understand the extent to which our resu
for S depend upon the choice of various background fu
tions. In Fig. 3, we compare ImS @as in Fig. 2~b!# for three
different background choices: Shirley, step-edge, and no s
traction at all ~for the last case, the spectrum is simp
chopped off at 0.5-eV binding energy, and thus no Loren
ian tail!. It is reassuring that all three results are qualitative

FIG. 3. ImS as in Fig. 2~b! ~with resolution deconvolution!, but
for three different background subtractions: Shirley~solid line!,
step-edge~dotted line!, and no subtraction with a cutoff at 0.5 e
~dashed line!.
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similar ~at higher binding energies, the unsubtracted case
cays to zero because of the cutoff!. There are some interes
ing quantitative differences of the step-edge backgro
from the other two, in particular, the step-like drop in ImS is
more pronounced~resulting in a much more pronounce
peak in ReS). This behavior is not very sensitive to th
choice of the leading-edge position and width of the st
edge background, and the result is quantitatively close to
theory of Ref. 23. In all cases, ImS is quite large at low
energies, consistent with a quasiparticle peak that is not r
lution limited.

We have also looked at data from aTc585 K underdoped
Bi2212 sample~data of Ref. 4!. Below Tc we find behavior
quite similar to that of Fig. 2. Of more interest in this case
the so-called pseudogap phase, where a gap is seen i
spectral function aboveTc .24,25 In Fig. 4~a!, we showT
595 K symmetrized data at the (p,0)2(p,p) Fermi cross-
ing. One again sees@Fig. 4~b!# a peak in ImS at v50, but it
is broadened relative to that of the superconducting state,
the corresponding divergence of ReS @Fig. 4~c!# is smeared
out. Such behavior would be consistent with replacing
BCS self-energyD2/(v1 i01) by D2/(v1 iG0). We have
recently shown that such a self-energy gives a good des
tion of low-energy data,5 and can be motivated by conside
ing the presence of pair fluctuations aboveTc . In fact, theS
of Fig. 4 looks remarkably similar to the simple form pr
posed in Ref. 5, even over a large binding energy ran
Note from Fig. 4 that although the equationv2ReS(v)
50 is still satisfied atuvu;D, Im S/Z is so large that the
spectral peak is strongly broadened in contrast to the s
peak seen belowTc . Actually, to a good approximation, th
spectral function is essentially the inverse of ImS in the
range uvu&2D. We can also contrast this case with da
taken aboveT* , the temperature at which the pseudog
‘‘disappears.’’ In that case, the spectrum is featureless,
the peak in ImS is strongly broadened. As the doping in
creases, this peak in ImS disappears. Further doping caus
a depression in ImS to develop aroundv50, indicating a
crossover to more Fermi-liquidlike behavior.

V. CONCLUSIONS

In conclusion, we have proposed a method for determ
ing the self-energyS(k,v) from ARPES data. Although
several important assumptions have to be made~particle-hole
symmetry, background subtraction!, the method has the ad
vantage that one can directly determineS, rather than at-
tempt to guess it by fitting the data.5,23,26Given the wealth of
information one can obtain, we expect this procedure to
very useful in elucidating the microscopic physics of solid
s
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particularly low-dimensional strongly correlated system
where many controversies exist. Specifically, we find a no
trivial frequency dependence ofS in the superconducting
and pseudogap phases of the high-temperature cuprate su
conductors, which puts strong constraints on the microsco
theory for these materials.
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