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Photoemission spectra of the high-temperature superconductor Bi2Sr2CaCu2O8 near~p,0! show a dramatic
change when cooling belowTc : the broad peak in the normal state turns into a sharp low-energy peak followed
by a higher binding-energy hump. Recent experiments find that this low-energy peak persists over a significant
range in momentum space. We show in this paper that these data are well described by a simple model of
electrons interacting with a collective mode that appears only belowTc . @S0163-1829~98!51318-5#

Angle resolved photoemission spectroscopy~ARPES! has
become one of the key tools used to elucidate the physics of
high temperature superconductors. It has produced a number
of important observations concerning the nature of the nor-
mal and superconducting phases. Examples are the existence
of a large Fermi surface, and an anisotropic energy gap in the
superconducting and pseudogap phases.1 The most interest-
ing aspect of the ARPES data, though, is the unusual nature
of the spectral lineshape and how this lineshape changes as a
function of doping, momentum, and temperature. Perhaps
the most profound example in this regard is the temperature
dependence of the lineshape near the~p,0! point in
Bi2Sr2CaCu2O8 ~Bi2212!. A very broad normal-state spec-
trum evolves quite rapidly belowTc into a resolution limited
quasiparticle peak, followed at higher binding energies by a
dip then a hump, after which the spectrum is equivalent to
that in the normal state.2–4 Similar effects have been seen in
tunneling spectra, where it has been found that all of these
spectral features~peak, dip, and hump! scale with the super-
conducting gap.5 This implies that the electron self-energy
has a dramatic change belowTc .

In a recent paper, our group has shown that the low en-
ergy peak persists over a surprisingly large range in momen-
tum space along the~p,0!-~0,0! and ~p,0!-~p,p! directions.6

As argued in that paper, this result can be connected to the
change in lineshape with temperature noted above. The idea
is that the dip in the spectrum at~p,0! implies that the imagi-
nary part of the self-energy, ImS, has a steplike drop from a
large value at binding energies larger than the dip to a small
value for smaller energies. This step behavior has recently
been verified by us by a direct extraction ofS from the data.
By Kramers-Kronig transformation, then, ReS will have a
strong peak at the dip energy. The consequence of this is that
there will always be a low energy quasiparticle pole trapped
on the lower-binding energy side of the dip energy, even
when the normal-state binding energy is quite large. It is this
effect which we believe leads to the persistent peak.

This raises the question of what kind of microscopic pic-
ture can lead to such behavior. As discussed in our paper,6 a
step edge in ImS is equivalent to the problem of an electron
interacting with a sharp~dispersionless! mode. This model

has been worked out in detail in the classic literature of
strong-coupling superconductors, where the mode is an Ein-
stein phonon.7 In the current case, though, the effect of the
mode only appears belowTc , and therefore implies a collec-
tive mode of electronic origin. Still, the mathematics is
largely equivalent. What we show in this paper is that this
simple model gives a good quantitative fit to the data.

We begin by discussing self-energy effects in supercon-
ductors. For now, we ignore the complication of momentum
dependence. The lowest-order contribution to electron-
electron scattering is represented by the Feynman diagram
shown in the inset of Fig. 1. In the superconducting state,
each internal line will be gapped byD. This implies that the
scattering will be suppressed foruvu,3D.8 This explains the
presence of a sharp resolution-limited quasiparticle peak at
low temperatures. What is not so obvious is whether this in
addition explains the strong spectral dip. Explicit calcula-
tions show only a weak diplike feature.9 To understand this
in detail, we equate the bubble plus interaction lines~Fig. 1
inset! to an ‘‘a2F ’’ as in standard strong-coupling
literature.7 In a marginal Fermi liquid~MFL! at T50,
a2F(V) is simply a constant inV. The effect of the gap is to

FIG. 1. a2F for three models, MFL~dashed line!, gapped MFL
~dotted line!, and gapped MFL plus mode~dotted line plusd func-
tion!. Inset: Feynman diagram for the lowest-order contribution to
S from electron-electron scattering.
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force a2F to zero for V,2D. The question then arises
where the gapped weight goes. It could be distributed to
higher energies, but in light of the above discussion, we
might expect it to appear as a collective mode inside of the
2D gap. For instance, this indeed occurs in fluctuation-
exchange calculations where the bubble represents spin
fluctuations,10 in which case a sharp mode will appear if the
condition 12Ux0(q,V)50 is satisfied forV,2D. These
three cases~MFL, gapped MFL, and gapped MFL plus
mode! are illustrated in Fig. 1.

S is easy to obtain analytically7 if we ignore the compli-
cation of the superconducting density of states from thek
2q line of Fig. 1 and just replace this by a step function atD.
The resulting ImS for the gapped MFL and gapped MFL
plus mode models are shown in Fig. 2~a! in comparison to
the normal-state MFL. Note that structure ina2F at V ap-
pears inS at uvu5V1D due to the gap in thek2q line.
Moreover, the MFL plus mode is simply the normal-state
MFL cut off at 3D ~this is obtained under the assumption that
all the gapped weight ina2F shows up in the mode!. In
contrast, the gapped MFL decays linearly to zero at 3D. This
gapped MFL form is not changed that much if one actually
solves the strong-coupling equations forS and D.9 ~For an
s-wave gap, the linear behavior of ImS is replaced by a
square-root behavior!.

The spectral function is given by7

A~v!5
1

p
Im

Zv1e

Z2~v22D2!2e2
, ~1!

with ~a complex! Z(v)512S(v)/v. These are shown in
Fig. 2~b! and were convolved with a Gaussian ofs57.5
meV, typical of high resolution ARPES, with a constant
ImS (G0) added foruvu.D to reduce the size of the quasi-
particle peak. We note that there is no dip as such for the
gapped MFL model, whereas the addition of the mode
causes a significant dip. The latter behavior is consistent with
experiment. Moreover, the mode model has the additional
advantage that ImS recovers back to the normal-state value

by 3D, which is also in agreement with experiment in that
the normal and superconducting state spectra agree beyond
90 meV.6

We contrast this behavior with that expected for a simple
d-wave model. To a first approximation, this can be obtained
by replacing the step drop in ImS in the MFL plus mode
model with (uvu2D)3 for uvu,3D.11 This is shown in Fig.
2~a! as well, with the resulting spectrum in Fig. 2~b!. Only a
weak dip appears. Moreover, we have analyzed models with
the exponent 3 replaced by somen and have found thatn
must be large to obtain a dip as strong as seen in experiment.
Therefore, the upshot is that at the least, something similar to
a step is required in ImS to be consistent with experiment.

In principle, we could take the above MFL plus mode
model and fit experiment with it. In this paper, though, we
consider a simpler model. There are several reasons for this.
First, the MFL model has a number of adjustable parameters
associated with it. There is the coupling constant~a!, the
cutoff frequency (vc), and the mode energy~which is not in
general 2D!. Moreover, the spectrum fork points near the
~p,0! point does not appear to be MFL-like in nature. We
have found that the normal-state Bi2212 spectrum is fit very
well by a Lorentzian plus a constant in an energy range less
than 0.5 eV. This is also true for Bi2201 spectrum where the
normal state can be accessed to much lower temperatures.
The constant term represents the so-called ‘‘background’’
contribution, and is essentially equivalent to spectrum fork
.kF , where it is also seen that the background gets gapped
by D in the superconducting state. There are several possi-
bilities for what the background could be due to, and in fact
could be a combination of all of these:~1! incoherent part of
A, ~2! inelastic secondaries,~3! emission from the BiO lay-
ers,~4! diffraction of the photoelectrons by the surface BiO
layer, etc. Since this has little to do with the peak/dip/hump
structure, we choose to subtract this off, but note the caveat
that this is an incomplete description if part of the back-
ground is intrinsic. Finally, the Lorentzian simplification al-
lows us to directly obtain the dispersionek from tight bind-
ing fits to the normal-state peak positions.4

In the resulting Lorentzian model, the normal stateS is
purely an imaginary constant, anda2F is a mode at zero
energy. In the superconducting state, this mode gets pushed
back to some energy within 2D. This model is artificial in the
sense that all the self-energy is being generated by the mode.
That is why we went through the above discussion motivat-
ing the mode more properly as a rearrangement ofa2F due
to the superconducting gap. In practice, though, the results
are very similar to the MFL plus mode model, and has the
further advantage of having the several parameters of that
model collapse to just the mode strength (G1) and mode
position (V0) of the Lorentzian model. Moreover, analytic
results can still be obtained forS when the superconducting
density of states for thek2q line of Fig. 1 is taken into
account. The result is

2ImS~v!5G0N~ uvu!1G1N~ uvu2V0!, uvu.V01D

5G0N~ uvu!, D,uvu,V01D

50, uvu,D , ~2!

whereN(v)5v/Av22D2 is the BCS density of states, and

FIG. 2. ~a! ImS for MFL ~solid line!, gapped MFL~dotted line!,
gapped MFL plus mode~dashed line!, and simpled-wave model
~dashed-dotted line!. Parameters area51, vc5200 meV, D530
meV ~0 for MFL!, V052D, and G0530 meV. ~b! Spectral func-
tions ~times a Fermi function withT514 K convolved with a reso-
lution Gaussian ofs57.5 meV! for these four cases (e5234
meV!.
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pReS~v!5G0N~2v!ln@ u2v1Av22D2u/D#

1G1N~V02v!

3 ln@ uV02v1A~v2V0!22D2u/D#

2$v→2v% , ~3!

where it has again been assumed thatD is a real constant in
frequency. Ans-wave density of states has been used to
obtain an analytic result. Ad-wave density of states will not
be that different. The advantage of an analytic result is that it
is useful when having to take spectra and convolve with
resolution to compare to experiment. Our results are not very
sensitive toG0 ~30 meV!, included again to damp the quasi-
particle peak.~A more realistic damping of the peak would
require makingD complex.! We use the same set of param-
eters for all k (G15200 meV!, and therefore assume a
d-wave gapDk5Dmax„cos(kxa)2cos(kya)…/2 in Eqs.~1!–~3!
with Dmax532 meV. The best agreement with experiment is
found by choosing the mode energyV051.3Dk , so that the
spectral dip for (p,0) is at 2.3Dmax.12

The resulting real@Eq. ~3!# and imaginary@Eq. ~2!# parts
of S at (p,0) are shown in Fig. 3~a!. Note the singular be-
haviors atD due to theG0 term and atV01D due to theG1
term. In both cases, step drops in ImS would also give sin-
gularities in ReS. The advantage of peaks in ImS ~due to the
density of states! is that it makes the dip deeper in better

agreement with experiment. In Figs. 3~b! and 3~c!, we show
a comparison of the resulting spectral function~convolved
with the experimental energy and momentum resolution! to
experimental data at~p,0! for both wide and narrow energy
scans, where a step edge background with a gap ofD is
added to the calculated spectrum as discussed above. The
resulting agreement is excellent.

To better appreciate these results, the positions of the
sharp peak and the higher binding energy hump obtained
from the calculations are plotted relative to the normal-state
binding energyek along the~0,0!-~p,0! direction, and com-
pared to those obtained from the experimental data of Ref. 6
in Fig. 4. This plot is very similar to that obtained for elec-
trons interacting with an Einstein mode.7 The calculations
reproduce the dispersionless nature of the low-frequency
peak, as well as its lack of visibility fork vectors close
enough to~0,0!. The dispersionless behavior is due to several
factors:~1! the weakness of the dispersionek near~p,0!, ~2!
the lowering ofV0;Dk as one moves towards~0,0!, and~3!
the influence of both ReS and D. The last is a new effect
worth commenting on. The real part of the self-energy im-
plies a mass enhancement (Z.1) in the superconducting
state relative to the normal state, which acts to push spectral
weight towardsEF . On the other hand,D itself pushes spec-
tral weight away fromEF . Thus the dispersion is dramati-
cally flattened relative to the normal state.

In the above calculations, it was assumed that the mode
frequency was proportional toDk . This was the easiest way
we found to properly simulate the loss of the experimental
low-frequency peak as one disperses towards~0,0!. In real-
ity, V0 is a function ofq in the diagram of Fig. 1, notk.
Moreover, it was our assumption of independence ofV0 on
q that allowed us to obtain a step drop in ImS, leading to the
spectral dip. Without some microscopic theory, only qualita-
tive observations can be made at this stage concerning the
true dependence ofS on momentumk.13 Assuming an arti-
ficial limit where onlyq5Q5(p,p) contributes, we would
replaceG1N(v1V0) in Eq. ~2! by gk,k1Q

2 Ak1Q(v1V0)
~for v,0), whereg is the interaction vertex. Using a qua-

FIG. 3. ~a! ImS and ReZ at ~p,0! from Eqs. ~2! and ~3!
(G15200 meV,G0530 meV,D532 meV,V051.3D!. Comparison
of the data at~p,0! for ~b! wide and~c! narrow energy scans with
calculations based on Eqs.~1!–~3!, with an added step edge back-
ground contribution.

FIG. 4. Positions~meV! of the sharp peak~lower set! and the
broad hump~upper set! in the superconducting state versus normal-
state peak position along~p,0!-~0,0!. Solid points connected by a
dashed line are the experimental data~Ref. 6!, the solid lines are
obtained from the calculations, and the dotted line represents the
normal-state dispersion.
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siparticle pole approximation forA when solving Eqs.~2!
and ~3!, this would imply a dip in the spectrum atuvu
5Ek1Q1V0 whereEk

25ek
2/(ReZk)

21Dk
2 , and a persistent

low-frequency peak ifZ is large enough. The coupling ofk
andk1Q in the self-energy equations also implies that if a
low-frequency peak exists fork, then one also exists fork
1Q. This is just the effect observed in the data along
~p,0!-~p,p!,6 in that a low-frequency peak exists for about
the same momentum range as that along~p,0!-~0,0!. It re-
mains to be seen whether such simple momentum dependent
models give as good a fit to the spectra as the dispersionless
model presented here.

Finally, it is interesting to note that the mode energy we
infer from the data is 41 meV, equivalent~probably fortu-
itously! to a resonant mode energy observed in YBa2Cu3O7
by neutron scattering data14 at Q5~p,p!. The models pro-
posed for this mode are similar to the model discussed in this
paper.15 So far, neutron-scattering data on Bi2212 have yet
to see a similar structure,16 although these experiments were

done on a rod of aligned small crystals. Our results here
would imply that such experiments on large single crystals
would be of interest.

In conclusion, we have shown that a simple model of an
electron interacting with a collective mode in the supercon-
ducting state gives a quantitative description of the unusual
spectral lineshape seen by ARPES data in the superconduct-
ing state of Bi2212. This implies that electron-electron scat-
tering plays a dominant role in high-temperature supercon-
ductors, and is in support of an electron-electron origin for
the pairing.
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