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Vortices in topological superconductors host Majorana zero modes (MZMs), which are 
proposed to be building blocks of fault-tolerant topological quantum computers. 
Recently, a new single-material platform for realizing MZM has been discovered in 
iron-based superconductors, without involving hybrid semiconductor-superconductor 
structures. Here we report on a detailed scanning tunneling spectroscopy study of a 
FeTe0.55Se0.45 single crystal, revealing two distinct classes of vortices present in this 
system which differ by a half-integer level shift in the energy spectra of the vortex 
bound states. This level shift is directly tied with the presence or absence of zero-bias 
peak and also alters the ratios of higher energy levels from integer to half-odd-integer. 
Our model calculations fully reproduce the spectra of these two types of vortex bound 
states, suggesting the presence of topological and conventional superconducting regions 
that coexist within the same crystal. Our findings provide strong evidence for the 
topological nature of superconductivity in FeTe0.55Se0.45 and establish it as an excellent 
platform for further studies on MZMs. 
 
Majorana zero modes (MZMs) are proposed to be building blocks of fault-tolerant 
topological quantum computation1 due to their non-Abelian statistics. Several systems are 
predicted to host MZMs, such as intrinsic p-wave superconductors2,3, and multiple 
heterostructures combining strong spin-orbital coupling (SOC) and superconductivity4-12. 
Recently, a new single-material platform of iron-based superconductors (FeSC) has been 
discovered13-15, in which topological nontrivial bands and high-Tc superconductivity coexist 



naturally16 without the need of proximity effect common to other proposals. This has led to 
the observation of a pronounced zero-bias conductance peak (ZBCP) in vortices of 
FeTe0.55Se0.45

17 and a related compound18.  
 
While a ZBCP that does not split across the vortex core is regarded as a strong indication of 
MZM and topological nature of the superconducting vortex4,17-19, the observation of ZBCP 
alone is not enough to prove it. Although several pieces of evidence including spatial profile, 
tunneling barrier dependence, magnetic field dependence and temperature evolution are fully 
consistent with MZM in FeTe0.55Se0.45

17, more convincing verification requires demonstration 
of the nontrivial topology of the superconducting vortex and underlying band structure.  The 
single crystal of FeTe0.55Se0.45 is a unique platform to demonstrate the fundamental distinction 
between the trivial and topological vortices. Its large ratio17,20 of Δ /EF enables realization of 
the quantum limit21, where the low-lying quasiparticle bound states, the so-called Caroli-de 
Gennes-Matricon bound states (CBSs)22, become discrete levels observable separately within 
the hard superconducting gap.  These bound states are the eigenstates of the vortex planar 
angular momentum21-23 with the eigenvalue determined by topological phase of the host 
superconductor4,24. Even though topology dictates existence of two types of discrete bound 
state spectra, in ordinary circumstances a given material belongs to just one of the classes. 
This restricts a single sample to either type of the spectrum and thus forbids a direct 
comparison. However, in a surprising twist, the intrinsic inhomogeneity of FeTe0.55Se0.45

25, 
while reducing the number of vortices that host MZM17, provides a rare opportunity to 
observe topological and ordinary vortices simultaneously in the same material or even the 
same region, thus making such a comparison feasible. 
 
Here we report on a systematic scanning tunneling microscopy/spectroscopy (STM/S) study 
of vortices in FeTe0.55Se0.45. We observe two topologically distinct classes of vortices, which 
differ not only by the presence or absence of ZBCP, but also by quantization sequence of the 
remaining higher energy subgap states. Our detailed analysis compares and contrasts multiple 
vortices that belong to these two classes and reveals that the ratios of bound state energy 
value follow either integer or half-odd-integer numbers, provided that the chemical potential 
is not too small as compared to the superconducting gap. This fundamental difference, arising 
due to additional angular momentum contribution, is accounted for by our model calculation, 
which reproduces the discrete bound state spectra and allows us to identify the integer-spaced 
levels as emerging from topological surface states. In contrast, in an ordinary vortex without 
MZM, the discrete CBSs energies have half-odd-integer spacing, reflecting the trivial 
topology of the underlying band structure. This half-integer level shift of vortex bound states 
between two distinct classes of vortices provides strong evidence for the existence of a pure 
Majorana zero mode in the FeSC material. Our results also provide a detailed understanding 
of vortex bound states in FeTe0.55Se0.45 and in this way facilitate future applications of MZM 
present in this material platform.  
 
Integer quantized CBSs in a topological vortex core 

To investigate the vortex bound state spectra experimentally, we perform low-temperature 
(Texp = 0.55 K) high-resolution (0.28 meV) STM/S measurements on as-grown 
superconducting FeTe0.55Se0.45 single crystals (Tc = 14.5 K). An atomic resolved lattice 
structure is observed on the in-situ cleaved surface (inset of Fig. 1a). When the magnetic field 
exceeds Hc1, superconducting vortices appear as the material enters the mixed state typical of 
the type-II superconductor26. With a 6.0 T magnetic field applied perpendicularly to the 
sample surface, we find multiple vortices in the zero-bias conductance map shown in Fig. 1a.  



In the center of the vortex core, there are sharp ZBCPs with a full width at half-maximum 
(FWHM) being almost resolution and temperature limited (Extended Data Fig. 1a & 1b). In 
the previous work17, we have provided evidence that this ZBCP is a Majorana zero mode 
induced by the surface Dirac fermions observed in high-resolution angle-resolved 
photoemission spectroscopy (ARPES) measurements16. In this study, we highlight additional 
high-energy subgap features in the spectrum that are crucial in distinguishing between 
topological and trivial nature of superconducting vortices and its underlying band structure. 
To obtain better understanding of the origin of these subgap features, it is beneficial to focus 
on the vortices where there are several visible peaks inside of the gap. This situation 
corresponds to vortices present in a region of comparatively smaller, but not too small, Δ /EF 
ratio, to guarantee the presence of several subgap levels with discrete spectra observable 
under the quantum limit21. For such a vortex, the spectrum measured slightly off the center 
(the blue curve in Fig. 1b) shows three high-energy bound states that coexist with the MZM 
more clearly. We find that similarly to the MZM, the non-zero energy bound states are also 
not shifting when changing spatial position of the STM tip (Fig. 1c). The discrete features in 
the spectrum whose energy does not shift along the real space cut are characteristic of CBSs 
in the quantum limit21, as observed previously27. The strong electron correlation in this 
material28 leads to a large Δ /EF, thus enabling our experiments well below the required 
temperature (Texp < TQL = Tc Δ  / EF). 
 
We next examine the level spacing of these discrete CBSs coexisting with a MZM (Fig. 2). 
We extract the energy positions of each level (Fig. 2c) using a Gaussian fit (Fig. 2b). We 
identify six discrete levels marked by L0, L±1, L±2, L+3, with the energy values being 0 meV, 
0.65 meV, 1.37 meV, and 1.93 meV, respectively (Extended Data Fig. 1d). It is clear that the 
CBSs are almost equally spaced in energy. By using the energy of the first level as the energy 
unit, we present a histogram for each of the levels (Fig. 2d) showing that the ratio of energy 
levels (EL / ΔE) closely follows the form of 0 : 1 : 2 : 3. The integer quantized CBSs can be 
also visualized in an overlap plot (Fig. 2e), with several spatially non-shifting peaks 
coexisting with the sharp MZM. We summarize the energy level ratios of seven different 
vortices in which a MZM is observed (Fig. 2f). Although the absolute level energies vary 
slightly from vortex to vortex (Extended Data Fig. 2), the normalized energy in a unit of first 
energy level converges to a straight line of integer quantization for all of the vortices present 
in such regions. It implies that even though in those vortices the CBSs energy values are 
influenced by local environment, the integer quantized property is robust, as long as the 
topological nature of underlying band structure remains intact. 
 
We support this conclusion by an energy spectrum calculation using Fu-Kane Model4,17 
(Supplementary Information). We present the comparison between observed peak positions 
and calculated energy eigenvalues of vortex bound states (Extended Data Fig. 5f). An 
excellent agreement provides strong evidence for the topological nature of superconductivity 
in FeTe0.55Se0.45, demonstrating that the integer quantized CBS levels are the direct 
consequence of the topological surface states. In the previous work17, we focused on vortices 
with larger level spacing between MZM and first vortex bound state at non-zero energy. Our 
calculation also reproduces its spectrum precisely when we decrease the value of the 
chemical potential (Extended Data Fig. 5e). That shows in the case of the chemical potential 
very close to the Dirac points, a large level spacing will push the first non-zero bound states 
being very close to the energy of superconducting gap, thus the integer quantization of CBS 
levels is broken down by quantum confinement effects29. We also notice that the energy 
position of Dirac point is a “sweet spot” for quantum computation. If the chemical potential 



is exactly located at such a point, a MZM is the only allowed subgap state in a topological 
vortex core29-31, and all the other non-zero bound states are pushed to the superconducting gap 
edge (Supplementary Information). 
 
Half-odd-integer quantized CBSs in an ordinary vortex core 

However, in our samples there exists another class of vortices that do not contain MZMs. To 
examine their origin, we perform a comparison study for the CBSs in these ordinary vortices. 
Similarly as in the case of a topological vortex, the CBSs in the ordinary vortex are discrete 
in energy (Fig. 3). The first CBS level (L+1) is located at 0.26 meV. The energies of higher 
levels (L+2, L+3, L+4, L+5) are found to be 0.83 meV, 1.34 meV, 1.84 meV, 2.34 meV, 
respectively. These CBSs show a strong particle-hole asymmetry, being strong in the positive 
energy and very weak in the negative energy (Fig. 3b). The particle-hole asymmetry is a 
common phenomenon for the superconducting vortex core for FeSC materials32,33, though the 
degree of asymmetry varies for different vortices (Extended data Fig. 4).  
 
Although we cannot locate the L-1 level of CBSs in Fig. 3, the absence of the ZBCP indicates 
that no bound state in the vortex has angular momentum eigenvalue equal to zero. By using 
the first level spacing as a unit, we summarize the ratios (EL / ΔE) of the three vortices in Fig. 
3d. Despite a strong variation of particle-hole asymmetry among these vortices, the ratios 
converge into a straight line of half-odd-integer quantization with the form of 0.5 : 1.5 : 2.5 : 
3.5 : 4.5. The appearance of CBSs with energy values proportional to half-odd-integers in a 
vortex without a ZBCP is consistent with the expected behavior of an ordinary vortex core in 
which only the pairing in conventional bands contributes to quasiparticle excitations under a 
magnetic field21-23,34. The angular momentum eigenvalues of bound states in an ordinary 
vortex are half of an odd integer. Accordingly, the energies of CBSs inherit the half-odd-
integer quantization with an equal level spacing close to the center of the gap. In this case we 
also provide numerical calculation of the energy spectrum based on solving Bogoliubov-de 
Gennes equation with the parabolic conventional bands that reproduces the experimental 
energy values (Extended Data Fig. 3).  
 
Characteristic spatial pattern of the quantized CBSs 

Friedel-like oscillation of local density of states has been predicted in half-odd-integer 
quantized CBSs of an ordinary vortex core, with the spatial periodicity being approximately 
of the scale of Fermi wave length ~1/kF

21,35. The typical kF of conventional bands is larger 
than 0.1 A-1 36, leading to the spatial oscillation of CBSs within 1 nm in an ordinary vortex 
core, which is difficult to be observed by STM26,27, 32-34. However, in FeTe0.55Se0.45, a minimal 
value of kF of the order of 0.01 A-1 was observed for its Dirac surface state16. Therefore, the 
resulting large oscillation periodicity enables easier observation of the spatial pattern of CBSs 
by STM. As a final piece of evidence for topological nature of the vortices that contain ZBCP, 
we perform a constant-bias conductance mapping of the three lowest levels of the integer-
quantized CBSs (Fig. 4). While the ZBCP and the first-level CBS (L+1) display a solid circle 
spatial pattern around the center of vortex core (left panels of Figs. 4a, b), the second-level 
CBS (L+2) shows a hollow ring pattern around the vortex center (left panel of Fig. 4c). This 
pattern is unique to Dirac fermions of topological surface states with spin-momentum locking, 
whereas in ordinary vortices only a single bound state has a wave function maximum at the 
center of the vortex21,38. The measurement is also fully consistent with our numerical 
calculation (middle panels of Figs. 4a-c) which clearly reveals this spatial pattern difference 
of the wave functions of these three levels (right panels of Figs. 4a-c).  



Half-integer level shift between two classes of vortices 

We have clearly observed the distinction in the energy spectra of vortex bound states in 
topological and ordinary vortices. In an ordinary vortex core (Fig. 5a), only the conventional 
bands contribute to quasiparticle excitations and the bound states have eigenvalues of angular 
momentum that are half-odd-integer as a result of addition of integer orbital contribution L 
and half-odd-integer vorticity contribution � (for vortices with an odd winding number). 
Accordingly, the energy eigenvalues of CBSs are also approximately half-odd-integer 
quantized, i.e. Eν = νΔ2/EF (ν = ±1/2, ±3/2, ±5/2, …), with ν being the eigenvalue of angular 
momentum21-23. On the other hand, topological vortices (Fig. 5b) that arise due to 
superconductivity in Dirac surface states gain additional half-odd-integer contribution S to 
angular momentum due to intrinsic spin carried by Dirac fermions4,29,37. This leads to a half-
integer shift of the angular momentum, thus being an integer and the energy values of the 
bound states become integer quantized, i.e. Eν = νΔ2/EF (ν = 0, ±1, ±2, ±3, …). Majorana zero 
modes can then be regarded as a special zero-energy CBS for a topological superconducting 
state with ν = 0, as long as the zero energy CBS is equal-weight mixture of particle/hole 
components, and the spin degree of freedom is frozen out24. 
 
Summary and outlook 

By means of direct comparison between topological and ordinary vortices in the same crystal 
of FeTe0.55Se0.45, we clearly demonstrated half-integer level shift of CBSs around a Majorana 
zero mode. This indicates that these two types of vortices are in different topological phases24, 
varying with the participation of Dirac surface states in superconducting quasiparticle 
excitations4,29,37. The larger level spacing between the MZM and first CBS in this material, 
especially when the material approaches the zero doping limit29-31 (Extended Data Fig. 6), 
protects the MZM from external perturbations38, which is favorable for demonstration of non-
Abelian statistics of MZMs in a braiding operation1.  
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Figure 1 | Caroli-de Gennes-Matricon states in a vortex with a Majorana zero mode. a, 
A normalized zero-bias conductance map measured at a magnetic field of 6.0 T, with the area 
70 nm by 70 nm. The average inter-vortex length is around 19.3 nm, which is consistent with 

the expectation, ! = 2Φ%/ 3(.  Insert: A STM topography of FeTe0.55Se0.45 (scanning area 
10 nm by 10 nm). b, Typical tunneling conductance spectra measured around the vortex 
marked by the white box in (a). The curves are offset for clarity. The red curve is measured at 
the vortex center. The blue curve is measured slightly off the center, and the black curve is 
measured at the vortex edge. The short colored bar below each curve marks its zero 
conductance. c, Three dimensional display of the line-cut intensity plot along the white dash 
line indicated in (a). Four subgap states are identified by the arrows in different colors. 
Besides the MZM, all the Caroli-de Gennes-Matricon states almost remain at the same 
energy along the line cut through the vortex.  
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Figure 2 | Integer quantized CBSs in a topological vortex. a, A line-cut intensity plot of 
the topological vortex #1, discrete quantized CBSs are marked by colored solid lines. b, A 
waterfall-like plot of (a) with 32 spectra. Spectra numbers are marked on the left side. The 
curves in red, blue and black are shown in Fig. 1(b) with same colors. c, The energy values 
of the observed CBSs at different spatial positions. The energies of CBSs, marked by L0, L±1, 
L±2, L+3, are extracted from (b) with a Gaussian fit. The error bar is calculated by the standard 
deviation of each energy level. The standard deviation of the MZM is 0.08 meV, smaller than 
the lock-in modulation energy used in the experiments, eVmod = 0.1 meV. The energy values 
of the solid lines are calculated by the average energy of each level. d, A histogram of the 
energy values of all the observed subgap states. The sampling width is 40 µeV. The energy of 
the horizontal axis is normalized by the first level spacing, i.e. the ratio EL/ΔE. e, An 
overlapping plot of 10 dI/dV spectra selected in (b). f, Summary of EL/ΔE vs level number 
data for topological vortices #1 to #7. It demonstrates that the CBSs energies are proportional 
to integers. The solid line is calculated using EL/ΔE = EL/(Δ2/EF ) = ν,  ν being the number of 
energy level. 
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Figure 3 | Half-odd-integer quantized CBSs in an ordinary vortex. a, A line-cut intensity 
plot of the ordinary vortex #8, the CBSs are marked by solid lines with colors. b, A waterfall-
like plot of (a) with 32 spectra. Spectra numbers are marked on the left side. c, An 
overlapping plot of 10 dI/dV spectra selected in (b) with each energy level of the CBSs 
marked by L+1, L+2, L+3, L+4, L+5 on the top. d, Summary of EL/ΔE vs level number data for 
ordinary vortices #8 to #10. ΔE is determined by double of energy of the lowest level. It 
demonstrates that the CBSs energies are proportional to half-odd-integers. The solid line is 
calculated using EL/ΔE = EL/(Δ2/EF ) = (2ν − 1)/2,  ν being the number of energy level. 
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Figure 4 | Spatial pattern of integer quantized CBSs. a - c, Comparison plots between 
STM measurements and numerical calculations for L0 (MZM), L+1, L+2, respectively. The 
insert curve in (a) is a typical STM spectrum measured at a vortex center, that integer-
quantized CBS levels are located at 0.6 meV, 1.3 meV, and 1.8 meV for L+1, L+2 and L+3, 
respectively. The first column is the constant bias conductance maps of each CBS levels with 
the area 25 nm by 25 nm, the cyan symbols marked on the three images are the locations of 
the vortex centers extracted from (a). The MZMs (L0) and the first CBS level (L+1) have the 
strongest intensity at the vortex center, however, the second CBS level shows a ring-like 
feature around the vortex center with an offset. The radius of the ring (R) is about 7 nm, 
which corresponds to the value of kF ~ 1/R ~ 0.014 A-1, similar to the results of ARPES 
measurements on the Dirac surface states. The second column shows numerical calculations 
of two-dimensional local density of states based on the model we constructed to simulate a 
topological vortex core (Supplementary Information). The third column displays the radial 
wave function of each level.  
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Figure 5 | Half-integer level shift around a Majorana zero mode. First column: Schematic 
plots of the underlying surface and bulk band structure within different cases. Second 
column: Schematic plots of the subgap CBSs. The blue axis marks the eigenvalues of vortex 
planar angular momentum. a, When the underlying band structure is topological trivial, the 
vortices behave ordinarily. The bulk bands with spin degeneracy dominate quasiparticle 
excitations inside the vortex. Due to the absence of the Dirac electrons on sample surface, 
quasiparticles can only feel the phase winding of the ordinary superconducting vortex, which 
leads to half-odd-integer angular momenta, and related half-odd-integer quantized CBSs. b, 
When the underlying band structure is dominated by the topological surface state, vortex 
quasiparticle excitations gain an additional angular momentum from the Dirac electrons. It 
induces a half-integer level shift of those CBSs as compared with (a), the zero-energy bound 
state becomes a Majorana zero mode, due to the effective spinless p-wave-like pairing 
induced on the Dirac surface states. If the chemical potential in (b) is tuned to the Dirac 
point, which is the zero doping limit, all the CBSs are pushed towards the gap edge, leaving 
the MZM isolated at zero energy (Extended Data Fig. 6).  
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METHODS  

Sample preparation. High quality single crystals of FeTe0.55Se0.45 were grown using the self-flux 
method, and their values of Tc were determined to be 14.5 K39 from magnetization measurements. 
There are two kinds of single crystals crystalizing simultaneously with similar structures and Te/Se 
compositions. Fe1+yTe0.55Se0.45 single crystals with excess Fe atoms, with shinning surfaces that are 
easy to cleave, are non-superconducting before annealing under Te atmosphere. FeTe0.55Se0.45 single 
crystals without excess Fe, usually without shinning surface, are superconducting without post-
annealing. All STM/STS data shown in this paper are from as-grown FeTe0.55Se0.45 single crystals17.  

STM measurements. The samples used in the experiments were cleaved in-situ and immediately 
transferred to a STM head. Experiments were performed in two different ultrahigh vacuum (1 × 10-11 

mbar) LT-STM systems, STM#1 (USM-1300s-3He) and STM#2 (USM-1300-3He with a vector 
magnet)17, STM images were acquired in the constant-current mode with a tungsten tip. Differential 
conductance (dI/dV) spectra were acquired by a standard lock-in amplifier at a frequency of 973 Hz, 
under modulation voltage Vmod = 0.1 mV, set point voltage Vs = -5 meV and tunneling current It = 200 
pA.  The equipment energy resolution was calibrated on a clean Nb (110) surface, being 0.27 meV for 
STM#1 and 0.23 meV for STM#2. The voltage offset calibration was followed by a standard method 
of overlapping points of I-V curves. Low temperatures of 0.4 K can be achieved by a single-shot 3He 
cryostat. A perpendicular magnetic field up to 11 Tesla for STM#1 and a vector magnetic field with 
the maximum value 9z-2x-2y Tesla for STM#2 can be applied to a sample surface. All the data were 
measured by STM#2, except the data shown in Extended Data Fig. 2d.  

Tunneling barrier dependence of ZBCP within integer quantized CBSs. To check the Majorana 
behavior of ZBCPs within integer quantized CBSs, we performed tunneling barrier evolution 
measurements on vortex #1. The ZBCPs do not shift across two orders of magnitude of tunneling 
barrier conductance (Extended Data Fig. 1a). FWHMs of ZBCPs, extracted by a simple Gaussian fit, 
are about 0.316 meV, which also barely change across two orders of magnitude of tunneling barrier 
conductance. We calculate the background of vortex #1, that defined as integrated area from -1 meV 
to +1 meV of the spectrum measured at vortex edge17. The background of vortex #1 is about 0.51, 
which is consistent with the scenario proposed previously17, that large background conductance 
induces extra energetic broadening of ZBCP. 

Possible origin of the two classes of superconducting vortices. The spatial profile of 
superconducting order parameter is anti-correlated with the local density of states, which enables the 
detection of the vortices in a STM/S measurement26. We found that topological and ordinary vortices 
can coexist in the same sample, and even can coexist in the same area within several hundred 
nanometers (Fig. 1a). One of the possible explanations is that the competition between Dirac surface 
states and conventional bulk band in quasiparticle excitations determines topological phase of vortices. 
Considering the intrinsic chemical inhomogeneity in such Telluride/Selenide alloy, it is reasonable 
that the competition is different among spatial positions. To be explicit, high resolution ARPES 
measurements16 shows the bulk SOC gap is about 20 meV, which is one order of magnitude smaller 
than that in Bi2Se3 family. Generally, Dirac surface states are protected by the time-reversal symmetry, 
so that they cannot be destroyed by weak perturbations from non-magnetic scattering40. Even though 
such a mechanism truly holds in FeTe0.55Se0.45, there is another possibility originating from the small 
SOC gap to break down topological protection. Any kinds of scattering can destroy topological 
nontrivial properties by overcoming the small SOC gap, which protects Dirac surface state. Those 
scattering potentials could be introduced by chemical disorder or multiple kinds of impurities beneath 
the sample surface. As long as the potential strength is larger than 20 meV, in the vicinity of the 
scattering potential, Dirac surface states are absent41,42, thus vortex excitations are dominated by 
conventional bands, and half-odd-integer quantized CBSs show up. That provides a clue that 
observation of MZM in FeTe0.55Se0.45 requires ultra-high sample qualities with low scattering strength. 
This idea is also supported by the recent experiments. The study of FeTe0.55Se0.45

27, which only found 
half-odd-integer quantized CBSs, shows a disordered vortex configuration, while in our previous 



study which observed sharp MZMs17, shows ordered vortex lattice (also see Extended Data Fig. 1c). 
Moreover, vortex bound states are also studied on a stoichiometric FeSe-plane of Li0.84Fe0.16OHFeSe18. 
It was claimed that MZMs can be found in all impurity-free vortices, while in defect pinned vortices 
ZBCP disappears. The break-down mechanism of topological band structure proposed here is a 
combination of disordered scattering potential and small topological bulk gap, which potentially leads 
to MZMs being found in a fraction of vortices. Even though the presence of topological surface states 
is spatially nonuniform, the topological origin of surface Dirac fermions is still universal and robust43. 
 
Toward the zero doping limit of a topological vortex core. Occasionally, in some vortices we 
observe a strong MZM peak at the zero energy without other subgap states in its vicinity, with one 
example shown in Extended Data Fig. 5, which is the same as the one in our previous study17. By 
carefully examining the spectra, we find three pairs of subgap states at the higher energies near the 
gap edge. To visualize the subgap state more clearly, we display several spectra measured at around -
5 nm of Extended Data Fig. 5a, together with a gray curve measured far away from the vortex center 
showing the full superconducting gap (Extended Data Fig. 5b). It shows clearly that on the negative 
energy, there are three energy levels marked by L-1, L-2, L-3, in which the peaks are barely shifted at 
different spatial positions. This indicates those subgap features are also quantized CBSs. The average 
energy of each level is 1.12 meV, 1.65 meV and 2.06 meV, respectively. It neither satisfies integer-
quantization nor half-odd-integer quantization. In order to get a detailed understanding of the 
difference between the vortex #1 shown in Figs. 1&2 and the vortex #11 shown in Extended Data Fig. 
5, we display their normalized intensity line profile at zero energy in Extended Data Fig. 5c. It is 
evident that the line profile of vortex #11 has a broader distribution, while the other two vortices are 
more concentrated around the vortex center. We implement Fu-Kane Model4,17 to simulate this 
difference qualitatively. As shown in Extended Data Fig. 5d, it shows the smaller Fermi energy of the 
Dirac band corresponding to the wider spatial distribution of the MZM wave function.  

The vortex quasiparticle spectrum of Dirac fermions has been studied in particle physics 
previously30,31. The subgap spectra of a vortex under zero-doping limit, that is chemical potential 
exactly located at charge neutrality (Dirac) point, have n zero energy states isolated (n being the 
winding number of superconducting vortex). All the other higher energy states are pushed to the 
superconducting gap edge ±|Δ0|. That provides an optimal condition for observing and further 
manipulating MZMs (Extended Data Fig. 6). If the chemical potential slightly deviates from zero 
doping limit, but with a sufficient small EF, the integer quantization of CBS is still absent due to 
quantum confinement effects29. Non-zero CBSs will crowd at higher energies close to the 
superconducting gap edge, and leave the MZM nearly isolated at the zero energy. In order to confirm 
this expectation quantitatively, we performed a numerical simulation on a Majorana vortex core. By 
using a very small Fermi energy, we reproduced the results of vortex #11 (Extended Data Fig. 5e).  

 
Numerical calculation. To model the experimental results, we performed calculations using 
Bogoliubov-de Gennes (BdG) Hamiltonian for 2D surface states with both linear (Dirac) and 
parabolic dispersion. We then assumed that a vortex with vorticity |*| = 1 is placed at the origin, 
which corresponds to the spatial dependence of the superconducting order parameter given by 
Δ -, / = Δ%	1 - 	234. The specific form of the radial dependence 1(-) is fitted for each case 
separately. For the Dirac surface states, the BdG Hamiltonian is: 

7839:; = <=>? @ABA + @DBD − F>? + Δ -, / >A 
> and B are Pauli matrices describing the particle-hole and spin spaces, respectively, <= is the Fermi 
velocity and F is the chemical potential. Since we have assumed rotational symmetry of the vortex, 
we can express the BdG equations as a set of 1D radial equations separated into angular momentum 
modes. We therefore use the following ansatz: 
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where T is the angular momentum. We can express all the lengths in terms of the coherence length 
U =

ℏWX
YZ

 and all the energies in terms of Δ% to finally obtain the set of differential equations: 
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with  F = F/Δ% and  - = 9

^
. This set of equations is then discretized on a 1D lattice (equivalent to 

solving the equations on a disk with radius _ = 100	U) and lowest lying eigenvalues and eigenvectors 
are obtained. To avoid fermion doubling problem, we use the approach of Susskind adjusted to quasi-
1D radial geometry44-46. The eigenvectors are then used to calculate the local density of states 
(presented in Fig. 4 of the main text) by using: 
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where the sums are taken over the positive eigenvalues and the spin components. The 2D density 
maps are then obtained from the radial dependence by using the rotational symmetry of the wave 
functions in our model. 
We also modeled the vortices that appear in the usual parabolic bands, which do not host Majorana 
fermions. The BdG Hamiltonian is then: 

7f:9 =
@J

2g
− F >? + Δ -, / >A 

where again > are Pauli matrices in particle-hole space and g is the effective mass of the band. We 
similarly decompose the BdG equations into angular momentum modes, obtaining in this a way a set 
of 1D radial equations. With energies expressed in units of Δ% and lengths in units of U, the equations 
read: 
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Then the equations are discretized on a 1D lattice. To avoid large numerical errors for small angular 
momentum values, we employed the discretization scheme proposed in Ref. 47. 
In order to obtain better fitting of the eigenvalues to the experimental results, we modified the radial 
profile of the vortex 1(-) from the standard form of tanh 9

^
. Since the iron-based superconductors 

have a rich phenomenology, there may be multiple causes responsible for such a change. Among 
these are the effects of multiple bands and gaps or in the case of the alloys (like the material under 
consideration) inhomogeneities of composition that can lead to spatially dependent superconducting 
order parameter even in zero field. To model such effects, we introduce a phenomenological radial 
profile of the vortex, which we obtain by multiplying the standard form by the spatial profile of the 
presumed region of suppressed superconductivity: 



1 - =
1 + Δm3c + 1 − Δm3c tanh

- − n	U
o	U

2
tanh

-

U
 

We then keep Δm3c =
p

J
 and for each case adjust the values of n and o. The radial profiles for the three 

cases highlighted in the paper are presented in Extended Data Fig. 7a. In Extended Data Fig. 7b, we 
present the comparison of eigenvalue fitting with the standard and the modified vortex core profiles. 
In the standard form of the radial function, the only parameter is the chemical potential and the fit 
uses the least squares method. While the results with the standard vortex profile are mostly within the 
error bars of the experimental data, the ratios of energies differ from the measured values. However, 
once we perform the calculation using the modified profile, the agreement with the experimental 
values improves significantly and the ratios are now correctly reproduced. 
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Extended Data Fig. 1 | Characteristics of ZBCP within integer quantized CBSs. a, Tunneling 
barrier evolution of the ZBCPs measured on vortex #1 shown in the main text, within integer-
quantized CBSs. The ZBCPs are located at 0 meV over two orders of magnitude of tunneling barrier 
conductance. b, FWHM of ZBCPs under different tunneling barriers. The average width is about 0.32 
meV. c, Autocorrelation of the zero bias conductance mapping shown in Fig. 1a, supporting an 
ordered hexagonal vortex lattice. d, Summary of energy positions of CBSs in vortex #1. 
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Extended Data Fig. 2 | More examples of integer quantized CBSs. a - f, Six topological vortices 
measured under different magnetic fields, samples and equipment. The first row shows intensity line-
cut plots. The second row shows the corresponding waterfall-like plots. The third row lists the energy 
positions of CBSs. Note: (d) is the same data used in Fig. S3 of the previous study17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EL(meV) EL /ΔE

E0 0 0

E1 0.53 1.00

E2 1.01 1.91

E3 1.70 3.21

E4 2.16 4.08

-2 0 2
Energy (meV)

5

0

-5

Di
st

an
ce

 (n
m

)
#2_2.5 T

Sample#1_STM#2

-2 0 2
Energy (meV)

dI
/d

V 
(a

.u
.)

a

-2 0 2
Energy (meV)

5

0

-5

Di
st

an
ce

 (n
m

)

#3_4.0 T
Sample#1_STM#2

-2 0 2
Energy (meV)

dI
/d

V 
(a

.u
.)

b

-2 0 2
Energy (meV)

5

0

-5

Di
st

an
ce

 (n
m

)

#4_4.0 T
Sample#1_STM#2

-2 0 2
Energy (meV)

dI
/d

V 
(a

.u
.)

c

-2 0 2
Energy (meV)

5

0

-5

Di
st

an
ce

 (n
m

)

#5_6.0 T
Sample#1_STM#2

-2 0 2
Energy (meV)

dI
/d

V 
(a

.u
.)

d

-2 0 2
Energy (meV)

5

0

-5

Di
st

an
ce

 (n
m

)

#6_4.0 T
Sample#2_STM#1

-2 0 2
Energy (meV)

dI
/d

V 
(a

.u
.)

e

-2 0 2
Energy (meV)

5

0

-5Di
st

an
ce

 (n
m

)

#7_2.0 T
Sample#3_STM#2

-2 0 2
Energy (meV)

dI
/d

V 
(a

.u
.)

f

EL(meV) EL /ΔE

E0 0 0

E1 0.55 1.00

E2 1.10 2.00

E3 1.59 2.89

E4 - -

EL(meV) EL /ΔE

E0 0 0

E1 0.66 1.00

E2 1.32 2.00

E3 2.00 3.03

E4 - -

EL(meV) EL /ΔE

E0 0 0

E1 0.73 1.00

E2 1.50 2.05

E3 2.19 3.00

E4 - -

EL(meV) EL /ΔE

E0 0 0

E1 0.80 1.00

E2 1.58 1.98

E3 2.30 2.88

E4 - -

EL(meV) EL /ΔE

E0 0 0

E1 0.73 1.00

E2 1.40 1.92

E3 2.03 2.78

E4 - -



 
 
Extended Data Fig. 3 | Numerical calculation of the ordinary vortex #8. a, Numerical 
calculations of the energy eigenvalues of CBSs versus angular momentum. The red symbols 
are experimental data, plotting the number of energy level as the eigenvalue of angular momentum for 
comparison. The black symbols are numerical calculations based on solving Bogoliubov-de 
Gennes equation with the parabolic conventional bands. b, Summary of energy positions of 
CBSs in vortex #8. 
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Extended Data Fig. 4 | More examples of half-odd-integer quantized CBSs. a - b, Vortex bound 
states in ordinary vortex#9 and #10, respectively. The first column shows intensity line-cut plots. The 
second column shows the corresponding waterfall-like plots. The third column lists the energy 
positions of CBSs. 
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Extended Data Fig. 5 | A topological vortex near the zero doping limit. a, A line-cut 
intensity plot of the topological vortex #11, in which the discrete CBSs are neither integer 
quantized nor half-odd-integer quantized. b, Eight tunneling conductance spectra shown in 
color are measured around 5 nm away from vortex center as indicated by a short black bar in 
(a). A gray curve measured at the vortex edge is overlapped on (b) for comparison. c, A 
spatial intensity profile of the MZMs extracted from vortex#1, #7 and #11. The MZM in the 
integer quantized topological vortex#1 and #7 has narrower spatial distributions, while MZM 
in the topological vortex#11 without integer quantized property has wider spatial 
distributions. Insert: a cartoon demonstrating chemical potential difference of the underlying 
Dirac bands of vortex #1 and #11. d, An analytical model plot of Majorana wave function 
used in previous study17. It shows that a MZM with larger Fermi energy obtains narrower 
spatial distribution. e, f, Numerical calculations of the energy eigenvalues of CBSs versus 
angular momentum. The calculation in (e) and (f) are compared with the observed peak 
positions of vortex #11 and #1, respectively. Red symbols show the experimental data. Model 
parameters: Δ  = 2.2 meV and EF = 2.64 meV for (e) and Δ  = 2.2 meV and EF = 3.63 meV for 
(f). The line-cut intensity plot in (a) and the black curve in (c) are the same data used in Fig. 
2 of previous study17. 
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Extended Data Fig. 6 | Topological vortices under zero doping limit. a, Schematic plots of 
the surface and bulk band structure, when the underlying band structure is dominated by 
topological nontrivial Dirac surface state within zero doping limit. b, Schematic plots of the 
corresponding subgap CBSs. All the CBSs are pushed towards the gap edge, leaving the 
MZM isolated at zero energy. 
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Extended Data Fig. 7 | Details on numerical calculations. a, Radial superconducting gap profiles of 
vortices used in calculations. The profile modification possibly arises from an additional dip in the 
superconducting order parameter due to inhomogeneities of the material. b, Calculation results with 
different methods. The blue symbols are numerical results based on modified radial profile shown in 
(a). Red circles are experiment results. Solid black symbols are numerical results based on standard 
radial profile and fitting by optimizing the global deviation with experiment values. Hollow black 
symbols are numerical results based on standard radial profile and fitting by optimizing the E1 
deviation with experiment values. 
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