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Dirac nodal surfaces and nodal lines in ZrSiS
B.-B. Fu1,2*, C.-J. Yi1,2*, T.-T. Zhang1,2*, M. Caputo3, J.-Z. Ma1,2, X. Gao1,2, B. Q. Lv1,2, L.-Y. Kong1,2,
Y.-B. Huang4, P. Richard1†, M. Shi3, V. N. Strocov3, C. Fang1,5,6, H.-M. Weng1,2,5‡, Y.-G. Shi1,5‡,
T. Qian1,5,6‡, H. Ding1,2,5,6

Topological semimetals are characterized by symmetry-protected band crossings, which can be preserved in
different dimensions in momentum space, forming zero-dimensional nodal points, one-dimensional nodal
lines, or even two-dimensional nodal surfaces. Materials harboring nodal points and nodal lines have been
experimentally verified, whereas experimental evidence of nodal surfaces is still lacking. Here, using angle-
resolved photoemission spectroscopy (ARPES), we reveal the coexistence of Dirac nodal surfaces and nodal
lines in the bulk electronic structures of ZrSiS. As compared with previous ARPES studies on ZrSiS, we obtained
pure bulk states, which enable us to extract unambiguously intrinsic information of the bulk nodal surfaces and
nodal lines. Our results show that the nodal lines are the only feature near the Fermi level and constitute the
whole Fermi surfaces. We not only prove that the low-energy quasiparticles in ZrSiS are contributed entirely
by Dirac fermions but also experimentally realize the nodal surface in topological semimetals.
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INTRODUCTION
When two bands cross each other, a hybridized gap is opened if without
symmetry protection. However, band crossings can be protected by cer-
tain symmetries in a class of materials called topological semimetals
(TSMs). In Dirac and Weyl semimetals, the band crossings with four-
and twofold degeneracies occur at zero-dimensional (0D) nodal points,
where the quasiparticle excitations are analogous to relativistic Dirac
andWeyl fermions, respectively. Dirac andWeyl semimetals have been
theoretically predicted (1–6) and experimentally confirmed (7–12).
Moreover, band theory has predicted three-, six-, and eightfold
degenerate nodal points (13–17), where the quasiparticles have no
counterparts in high-energy physics, and the threefold degenerate
points have been confirmed experimentally very recently (18, 19).

On the other hand, band theory has shown that additional crystal-
line symmetries can protect the band crossings along the 1D line in the
Brillouin zone (BZ) (20). In contrast to isolated nodal points, nodal
lines have much richer topological configurations, and they can con-
stitute nodal ring, nodal chain, nodal link, or nodal knot (21). Band
calculations have predicted numerous nodal-line semimetals (22, 23),
while a few candidates have been experimentally confirmed (24–26).
Recent advances in band theory have proposed that the band crossings
can be preserved on the 2D surface in 3D BZ (27, 28), further
expanding the scope of TSMs. To date, only a few nodal-surface semi-
metals have been predicted (27–29), and none of them are experimen-
tally confirmed.

ZrSiS has been proposed to have both nodal lines and nodal surfaces
protected by crystalline symmetries (30, 31). It crystallizes in a nonsym-
morphic space group P4/nmm (no. 129), which is isostructural to the
“111”-type iron-based superconductor LiFeAs (Fig. 1A).Owing toweak
interlayer coupling, the electronic structures of ZrSiS are quasi-2D, and
the band dispersions are very similar in all kx-ky planes. In an arbitrary
kx-ky plane, band inversion occurs at the BZ center, resulting in band
crossings on a closed ring surrounding the center of the kx-ky plane.
However, in the 3D BZ, the band crossings are protected only in the
horizontal and vertical high-symmetry planes, forming multiple inter-
connected nodal lines (red dashed lines in Fig. 1B). Very recently, band
theory has pointed out that the nonsymmorphic symmetries in ZrSiS
enforce band degeneracies in the kx = p and ky = p planes, forming the
nodal surfaces on the BZ boundary (yellow planes in Fig. 1B) (31).
They are present in the absence of spin-orbit coupling (SOC) but gen-
erally gapped when SOC is considered, which is common in systems
with the T P symmetry. However, because of small SOC effects in
ZrSiS, the millivolt-level gaps can be ignored in most of the experi-
mental work.
RESULTS
The electronic structures of ZrSiS have been studied by angle-resolved
photoemission spectroscopy (ARPES) (31–35). In Fig. 1 (E, I, and J), we
present the Fermi surfaces (FSs) and band dispersions measured with
vacuum ultraviolet (VUV) lights, which reproduce the previous results.
The VUV data show negligible dispersions along kz, as shown in the
Supplementary Materials. They are inconsistent with the calculated
bulk electronic structures in Fig. 1 (D and H) but well reproduced by
our slab calculations with spectral weights projected onto the topmost
unit cell in Fig. 1 (C and F), indicating that these ARPES data mainly
reflect the surface states in the topmost unit cell.

The most remarkable discrepancy between the surface and bulk
states is the surface electron FS pocket around the �Xpoint, which arises
from the surface floating bands caused by symmetry reduction at the
(001) surface (31). The symmetry reduction generally lifts the band de-
generacies on both nodal surfaces and nodal lines (31). Therefore, the
surface states are essentially different from the electronic states in the
bulk. The surface states are robust even in the bulk-sensitive soft x-ray
ARPES experiments (31), seriously hindering from the investigation of
the intrinsic bulk electronic structures.
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We found that when the samples were cleaved in air or in very few
cases in vacuum, the surface states could be eliminated. But using
soft x-ray, we observed clear band dispersions, which represent the
bulk electronic structures. In Fig. 1 (G, K, and L), we present the FSs and
band dispersions measured with photon energy hv = 436 eV, in which
the surface electron pocket and associated surface floating bands
disappear. By contrast, we observe a diamond-shaped FS enclosing
the G point and linearly dispersive bands along the G-X line, which
are well consistent with the calculated bulk electronic structures at
kz = 0 in Fig. 1 (D andH). The elimination of the surface states allows
us to systematically investigate the nodal surfaces and nodal lines in
the bulk states of ZrSiS.

The electronic structures of the nodal surfaces of ZrSiS are summa-
rized in Fig. 2. Figure 2 (D to F) shows the calculated bands in the kz= 0,
p/2, and p planes. The bands are doubly degenerate on the BZ boundary
R-A, L-H, and X-M, while SOC is not considered. There are two
degenerate bands in the energy range within 3 eV below EF, which
are indicated with red and green colors, respectively. The nonsym-
morphic symmetries enforce that all bands are doubly degenerate at
all kz’s on the BZ boundary, forming the nodal surfaces in the vertical
X-M-A-R planes, as indicated with yellow color in Fig. 2A. Figure 2C
plots a schematic band structure in an arbitrary kx-ky plane near the
Fu et al., Sci. Adv. 2019;5 : eaau6459 3 May 2019
nodal surface. The degenerated band splits into two away from the nod-
al surface, and the bands show a Dirac-like crossing in the normal di-
rection of the nodal surface. As discussed later, these features are
observed in our experimental data.

We first measured the band dispersions along X-R by varying pho-
ton energy. The measured band in Fig. 2B corresponds to the top of the
upper degenerate band (red curves in Fig. 2,D to F). It oscillates between
−0.5 and−0.7 eV along kzwith a period of 2p/c, which is consistent with
the band calculations. This indicates that our measurements can probe
the bulk states of ZrSiS.

On the basis of the data in Fig. 2B, we can determine the kz location
for each photon energy.We then selected three photon energies tomea-
sure the band dispersions in the kz = 0, p/2, and p planes, respectively.
Figure 2 (G to I) plots the experimental bands along cuts C1 to C3 on
the BZ boundary, which are well consistent with the calculations in Fig. 2
(D to F). In Fig. 2 (J to L), we observe band splitting along cuts C4 to C6,
which slightly deviate from the BZ boundary.

Figure 2 (M to R) plots the measured bands along cuts D1 to D6,
which are perpendicular to the BZ boundary, as indicated in Fig. 2A.
The bands along cuts D1 to D5 exhibit Dirac-like crossings on the
BZ boundary. When sliding the cut to D6 (Fig. 2R), the Dirac bands
become degenerate because D6 is located on the BZ boundary. These
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Fig. 1. Comparison between the (001) surface and bulk states of ZrSiS. (A) Crystal structure of ZrSiS. (B) Schematic of the locations of the nodal surfaces (yellow
planes) and nodal lines (red dashed lines) of ZrSiS in the bulk BZ. (C) Calculated surface band structures. (D) Calculated bulk band structures at kz = 0. (E) FSs measured
with hn = 42 eV. (F) Calculated surface FSs. (G) FSs measured with hn = 436 eV. (H) Calculated bulk FSs at kz = 0. (I and J) Band dispersions along the �G-�X and �M-�X lines,
respectively, measured with hn = 42 eV. (K and L) Band dispersions along the G-X and M-X lines, respectively, measured with hn = 436 eV.
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crossing points constitute the degenerate bands on the L-H line in Fig.
2H. Owing to the quasi-2D electronic structures of ZrSiS, the band dis-
persions are very similar in all kx-ky planes. The Dirac-like band cross-
ings on the BZ boundary are protected by the nonsymmorphic
symmetries for all kz locations, forming the Dirac nodal surfaces.

The electronic structures of the nodal lines of ZrSiS are summarized
in Fig. 3. The calculations show that the band crossings of the nodal lines
lie around EF. The interconnected nodal lines in the vertical and hori-
zontal high-symmetry planes (Fig. 1B) constitute 3D “cage”-like FSs
(Fig. 3N). Note that the FSs have finite volumes because the band cross-
Fu et al., Sci. Adv. 2019;5 : eaau6459 3 May 2019
ings do not reside exactly at EF.Wemeasured all FSs in the four high-
symmetry planes, as shown in Fig. 3 (C, D, G, and H). The experi-
mental FSs are well consistent with the calculations in Fig. 3 (A, B, E,
and F).

Figure 3 (I to L) plots themeasured bands along four high-symmetry
lines. These bands disperse almost linearly in an energy range within
1.5 eV below EF and cross each other near EF. In Fig. 3M, we show a 3D
plot to illuminate the band structure of the nodal ring in the kz=0plane.
The near-EF band crossings extend along a closed trajectory, forming a
diamond-shaped FS. As the band crossings are very close to EF in the
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Fig. 2. Electronic structures of the nodal surfaces of ZrSiS. (A) Schematic of momentum locations of cuts C1 to C6 and D1 to D6 in the bulk BZ. (B) Intensity plot of
second derivatives of the ARPES data along X-R measured in a range of hn from 405 to 730 eV. (C) Schematic plot of the band structure in an arbitrary kx-ky plane near
the nodal surface. Thick and thin red curves represent the degenerate band on the nodal surface and the nondegenerate bands away from the nodal surfaces,
respectively. Yellow lines represent the bands with Dirac-like crossing in the normal direction of the nodal surface. (D to F) Calculated bulk bands at kz = p, p/2,
and 0, respectively. The red and green lines indicate the degenerate bands on the BZ boundary. (G to L) Band dispersions along cuts C1 to C6, respectively. Arrows
in (J) to (L) indicate the band splitting when the cuts deviate off the BZ boundary. (M to R) Band dispersions along cuts D1 to D6, respectively. Red and green dots in (M)
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horizontal plane kz= 0 and vertical planeG-M-A-Z, the FSs in these two
planes are very thin (Fig. 3, A, C, E, and G). By contrast, the band cross-
ings are slightly away fromEF in the other twoplanes kz=p andX-G-Z-R,
where the FSs have finite sizes (Fig. 3, B, D, F, and H).

In Fig. 3O, we combine the measured FSs in the high-symmetry
planes of the BZ, which are well consistent with the calculated cage-like
FSs in Fig. 3N. The two nodal-ring FSs in the horizontal planes kz = 0
and p are connected by the nodal-line FSs in the vertical planesG-M-A-Z
and G-X-R-Z. The measured FSs are distinct from the previous ARPES
results, which show surface electron pockets around the �X point (31–35).
Our results demonstrate unambiguously that the whole FSs of ZrSiS are
composed of the nodal lines near EF, and therefore, the carriers are
contributed entirely by the Dirac fermions with nearly zero effective
masses (36). This makes ZrSiS a promising platform to study the
physical properties governed by Dirac fermions. The Shubnikov–
de Haas measurements on ZrSiS have revealed unusual field-induced
mass enhancement (37) and a sharp topological phase transition as a
Fu et al., Sci. Adv. 2019;5 : eaau6459 3 May 2019
function of angle of fields (38), which were associated with the Dirac
nodal-line band structures near EF.
DISCUSSION
Our results have revealed that ZrSiS has both Dirac nodal surfaces and
nodal lines in its bulk electronic structures. On the basis of the forma-
tion mechanisms, the band crossings in TSMs can be classified as acci-
dental or guaranteed. The nodal lines in ZrSiS belong to the first class,
which requires band inversion. All experimentally identified TSMs so
far have accidental band crossings, such as the Weyl points in TaAs
(9–12), Dirac points in Na3Bi (7) and Cd3As2 (8), triple points inMoP
andWC (18, 19), and nodal lines in PbTaSe2 (24) and TiB2 (25, 26). By
contrast, the nodal surfaces in ZrSiS belong to the second class, in
which the band crossings are guaranteed by specific space-group sym-
metries. ZrSiS is the first experimental example that realizes the guar-
anteed band crossings. Band theory has proposed that the second class
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MATERIALS AND METHODS
Sample growth and preparations
Polycrystalline powders of ZrSiS were first synthesized by mixing high-
purity zirconium (99.99%), silicon (99.999%), and sulfur (99.99%) and
sintering at 1000°C for 5 days. From the polycrystalline precursor, the
single crystals were grown by chemical vapor transport method with
iodine as agent. The polycrystalline powders and iodine in a mass ratio
of 1:0.07 were sealed in silica tubes under vacuum. Then, the silica tubes
were put in a gradient tube furnace with the source powders at 1050°C
and the cold end at around 950°C for 7 days. Rectangular plane-like
crystals were obtained from the cold end of the silica tubes.

ARPES experiments
Soft x-ray ARPES measurements were performed at the Advanced
Resonant Spectroscopies (ADRESS) beamline at the Swiss Light
Source with a SPECS PHOIBOS-150 analyzer (40) and the “Dreamline”
beamline of the Shanghai Synchrotron Radiation Facility (SSRF) with a
Scienta Omicron DA30L analyzer. Most of the soft x-ray ARPES data
were taken at the ADRESS beamline, with the overall energy resolution
varied from 40 to 100 meV. VUV ARPES measurements were per-
formed at the Dreamline beamline of SSRF with a Scienta Omicron
DA30L analyzer and at the 13U beamline of the National Synchrotron
Radiation Laboratory at Hefei with a Scienta Omicron R4000 analyzer.
In the soft x-ray ARPES experiments, to eliminate the surface states, the
samples were cleaved in air and then transferred to the vacuum cham-
ber. However, we found that the surface states could also be eliminated
for very few samples cleaved in high vacuum. In the VUV ARPES
experiments, all the samples were cleaved in high vacuum. The mea-
surements were performed at 20 K with vacuum condition better than
5 × 10−11 torr.

First-principles calculations of the band structure
We performed first-principles calculations based on density functional
theory (41) within the Perdew-Burke-Ernzerhof exchange-correlation
(42) implemented in the Vienna ab initio simulation package (43).
The plane-wave cutoff energy was 500 eV with a 12 × 12 × 6 k-mesh
in the BZ for bulk band and slab calculations. All the calculations were
in the absence of SOC.We usedmaximally localizedWannier functions
(44) to obtain the tight-binding model of the bulk ZrSiS and used it for
the FS calculations. The lattice constants a= b= 3.544Å and c= 8.055Å
and the atomic sites are in agreement with the experimental values.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/5/eaau6459/DC1
Fig. S1. ARPES data collected with VUV lights.
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